
Today it is rare to find much in the way of new ham radio equipment that
doesn't have a microprocessor tucked away inside which controls just
about every function. This article is intended to introduce you to a
simple-to-use processor and provide actual examples of circuits and
programs that should tempt you to exercise your imagination in
creating your own homebrew projects.

The BasicX-24 TM

BY DENNIS NENDZA,* W7KMV

any of the bells and whistles
now standard on radio equip-
ment would not be possible
little computers called micro-

processors on board. Admittedly, the
programs written to orchestrate the lat-
est big-buck transceivers are very com-
plex and generally not open to exami-
nation or modification. Few hams have
the ability to dig in and successfully
change such devices. However, not all
processors are difficult to use.

There actually are a few processors,
or controllers as they are also known,
that were created to be easily under-
stood and used. A popular small con-
troller that has been around for a num-
ber of years is the Basic Stamp IFM1
made by Parallax, Inc. It is programmed
in a fairly simple English-like language
called BASIC.2 However, there are sig-
nificant constraints to this particular
device, which include limited program
size, speed, and a very small work-
space for variables, which are the
places where information is stored.
Another impediment when considering
interfacing with analog circuits is this
controller's inability to directly read volt-
age levels.

NetMedia, ~ n c . ~ addressed these lim-
itations with the advent of its BasicX-
24TM (BX-24) controller. With vastly
superior performance for nearly the
same price, this little gem has not re-

p- --

*34 E. Maclver Place, Tucson, Arizona
85705
e-mail: < W7KMV@arr/.net>

Fig. 1- The BX-24/35 family. The complete BX-24 one-chip system is surround-
ed by the BX-35, which sports more I/O lines and an off-chip EEPROM and oscil-
lator; the LCDX, a complete computer with 4x20 character display with sounder,
16-key keyboard decoder, relay drivers, and adjustable ADC inputs; and the 2x1 6

serial data LCD display.

ceived the same attention as the Basic
Stamp !ITM. It is a remarkable comput-
er system on a chip. After building what
I felt was a rather complex application
for a messaging APRS tracker4 using
this processor, I felt more hams should
be exposed to this very useful tool. I
approached NetMedia for this article
and received samples of its processor
family, which are employed in the exam-
ples. Let's see what it takes to fire up

one of these devices and how to make
it do our bidding.

Support System
Most small processors are "spoon-fed"
their programs from another computer,
typically the ubiquitous personal com-
puter. Any PC running Windows 95TM
or better will suffice to develop a pro-
gram and upload it to the BX-24. The
same computer can also be used as an

34 CQ March 2007 Visit Our Web Site

that to power the device, then connect it to Pin 21 in lieu of
any connection to Pin 24. Pins 1-3 comprise the processor
serial out, serial in, and attention signals, respectively. The
additional circuitry in fig. 3 is used and explained later in this

Now that the hardware is connected, we need to establish
a means of talking to the processor and sending it the pro-
grams we are going to develop on the PC. On the BasicX-
24TM website (see note 3), there is a download page where
both the documentation and the programming environment
may be obtained. I leave it to the reader to go through the
install process and peruse the documentation.

When starting the BasicX 2.10 development environment,
you will notice that it consists of two major sections. The first
part that opens a window is the "Downloader." From this win-
dow we can set parameters that relate to the specific model
of the processor that we are using (there are three variants),
the download port, and even stop and start the processor via
the serial connection. For now, let's make sure the following
menu items are set:

File-Set Starting Directory: Choose a directory where
you want your program to reside.

Processor-Processor Type: Set to the processor type

110 Ports-Download Port: Set to the serial port to use on
your computer and OPEN it.

At this point we can invoke the editor window by selecting
File-Open Editor. This new window is the one in which we
will build the example applications in this article. Select File-
New Project to get started and set the project type to "General

s,'a 55-15 VDCsource Purpose," project name to "CQBlink," the module name to
and serial Port. Onboard red and green LEDs can be "CQBlinker," and click OK. You will notice that the window

programmed for simple visual I/O tests. now has the project name in the title bar and several lines of
program code already included inside.

It is important to understand the difference between a pro-
output device for data coming out of the controller if we ject, a module, and subroutines. Briefly stated, a project con-
choose to keep the computers linked after uploading the pro- tains all files and programming that relate to a particular
gram. You will need a machine with a serial port for com- undertaking, such as a data logger, a GPS decoder, a digi-
munication. This is worth noting, as some computers are now tal thermometer, or a digital SWR meter. A project contains
being sold with only USB ports as the replacement for the one or more modules. A module name shares the file name
once-standard serial connection. USB to serial converters in which the module is stored. Within modules you may define
do exist5 should you be fortunate enough to have a late- and use subprograms which may be made accessible to
model machine with no serial port. other modules by declaring them public, or inaccessible by

The BX-24 computer arrives as a miniature collection of declaring them private. Confusing? Don't be too concerned
surface-mount components pre-assembled on a 24-pin car- at this point, as the examples will help to get us past all this.
rier. It plugs into a solderless breadboard or perf board just We will employ one module in one file with several subrou-
like any other 24-pin chip and is ready to go once power and tines. Now, enter the program in Table I into the editor win-
the serial port are connected. It is one of several physical dow or pick up acopy of it from the <members.cox.net/desert-
implementations available which share the same program- lavender/bxprojects.htm> web site7, where all the example
ming and development environment. Fig. 1 shows the programs can be found. If you download the program, you
BX24135 familyof devices currentlyavailable. The BX-35 has can just copy it and paste into the editor window. Delete any
more I10 pins and uses an outboard crystal oscillator. Fig. 2 duplicate lines at the beginning or end of the window follow-
shows the basic setup of a BX-24 on a breadboard, and fig. ing the paste. It is good practice while typing in a program to
3 is the schematic. In addition, prepared experimenter boards periodically perform a File-Save Project operation to ensure
available from NetMedia and Peter H. Anderson6 provide that our work is saved as we progress. Note that complete
room for additional circuitry of your own design. I find that programs are saved as projects and have several compo-
nothing beats a good-size solderless breadboard (or two) for nents described by the "projectname.bxpH file. The editor will
trying out the latest idea. only open ".bxpV files.

In fig. 3 you can examine the pin-out diagram of the proces- With all the typing complete, it's time to let the BX-24 com-
sor, showing a connection to power and a serial path to the piler scan our program and see if there are any errors that it
PC . There are two ground pins. Pin 23 is to be used for the can find. Select the Compile-Compile menu item or press
negative power connection, and Pin 4 is used as common the F4 function key to have the program scanned and com-
for the serial I10 connection to the PC. Pin 24 accepts +5.5 piled. When errors are found, the line number and error type
to 15 VDC, which is used to power the processor. A small will bedisplayed. This compiler does not supply a list of errors,
on-board voltage regulator allows for the wide range of input since it stops on the first error found. Cleaning up the com-
voltage. If you have regulated 5 VDC and wish to use only pile errors is an iterative process in which you fix the line in

www.cq-amateur-radio.com March 2007 CQ 35

- - -

question and compile again. If the compile finds no errors, a
status line at the bottom of the editor window will indicate suc-
cess with a "Compiled O K message and show the length
of the program as well as how much RAM is used for vari-
able storage.

The next step is to transfer the compiled program to the
processor. This is accomplished from the first window we
encountered, the Download Window. The Processor-
Download menu item will initiate the transfer if the download
port has been specified and opened and there is a powered-
up BX-24 correctly connected at the other end of the serial
cable. Following a successful download, it is necessary to

restart the processor. This can be done by either selecting
Processor-Execute, clicking on the green light of the traffic
signal icon, momentarily grounding Pin 22 on the processor,
or cycling the processor power. If all went well, you should
see a red LED blinking out "CQ" on the controller.

FREQOUT!
A variant of this visible code sender adds sound, which
requires the addition of a small piezo speaker or simple head-
phone. Fig. 3 shows how to add sound output to the proces-
sor by connecting a sound-generating component to a

Option Explicit

This program blinks the red LED on the BasicX-24 chip to send a
visible CQ.

Define useful constants

Const RedLED As Byte = 25 Red LED'S equivalent pin
number

Const LEDon As Byte = 0 To set an OFF condition
Const LEDoff As Byte = 1 To set an ON condition
Const Speedconstant As Single = 1.20 Constant used to compute

element time

SpeedConstant/Speed(WPM)=element time
Const Speed As Single = 13.0 Set speed at 13 wpm

Define variables

Public TDit As Single Dit time
Public TDah As Single Dah Time
Public le As Single Inter-element time (Dit time)
Public Ic As Single Inter-character time (3x Dit

time)
Public Iw As Single Inter-word time (7x Dit time)

Public Sub Main()

Call RedOff
Call Delay (1 .O)

Ensure red LED off
Wait one second

TDit=SpeedConstant/Speed Set Dit time
TDah=TDit*3.0 Set Dah time
le=TDit Inter-element time
Ic=TDah Inter-character time
Iw=TDit*7.0 Inter-word time

Send a "C" via the red LED

Call Dah
Call Dit
Call Dah
Call Dit
Call Interchar

Send a "Q" via the red LED

Call Dah
Call Dah
Call Dit
Call Dah

Send an inter-word delay

Call Interword

Loop
send

End Sub

Call the Dah subroutine
Call the Dit subroutine

Subroutines follow

Public Sub Redon()

Turn red LED on

Call PutPin(RedLED, LEDon) Turn red LED on

End Sub

Public Sub Redoff()

Turn red LED off

Call PutPin(RedLED, LEDoff) Turn red LED off

End Sub
.-

Public Sub Dab()

Turn red LED on for TDah time and follow with le time off
Call RedOn Light it up
Call Delay (TDah) Wait TDah time
Call RedOff Turn it off
Call Delay (le) Follow with inter-element
time off

End Sub

Public Sub Dit()

Turn red LED on for TDit time and follow with le time off

Call RedOn Light it up
Call Delay (TDit) Wait TDit time
Call RedOff Turn it off
Call Delay (le) Follow with inter-element

time off

End Sub

Public Sub Interchar()

Perform inter-character delay assuming last element was
followed by an inter-element delay

Call Delay (Ic-le) Wait

End Sub

Go back and continuously Public Sub Interword()

Perform inter-word delay assuming last element was followed
by an inter-element delay

Call Delay (Iw-le) Wait

End Sub

- - -

Table 1- CQBlinker program listing.

36 CQ March 2007 Visit Our Web Site

processor output pin (Pin 15 in this ify a processor output pin and two fre-
example). The program alterations to quencies to output simultaneously for a
create an audible tone in addition to the given length of time. To produce a sin-
visible LED are shown in Table I!. gle tone, just specify a zero for the

The FREQOUT system library routine unused one. For the forward thinking
used in this example allows you to spec- among you, it may have just become

Fig. 3- BX-24 connections referenced in the examples. Zener diode, 02, is 4.3
V. D l can be any small signal diode. R2 is a Radioshack 271- 1 10A 1 OK ohm
thermistor. The piezo speaker can be a headphone or All Electronics PE-38.

L -
a! s
2 5 m

_I Q V)

t !2
$:

0

a!

apparent that DTMF (dual tone multi-fre-
quency) audio for phone dialing or con-
trol purposes can be created this way,
and indeed it can. Referring back to our
CW sending example, the time spent
sending a tone to the speaker can
replace the delay of our LED-only exam-
ple. If you were to use the processor as
an audio-generating device for connec-
tion to a transmitter or audio amplifier, it
would be a good idea to smooth out the
harsh-sounding square-wave with some
capacitance in parallel with the output
and use a small audio transformer to
couple to the external device's input.

. *
p G -- f

A Simple Morse Decoder
When considering how fast this little
processor could copy Morse code, I did
some back-of-the-envelope figuring
and estimated that it would be lucky to
hit 20 to 30 wpm. I thought the timing
would become skewed by the pro-
gram's inability to execute fast enough
to keep up with the next element at high-
er speeds. Boy, was I surprised when it
flawlessly copied an audio source timed
at 99 wpm! At 99 wpm the dits are about
12 milliseconds'long-not much time for
a small processor running a tokenized8
BASIC programming language to keep
track of things.

Keep in mind that if you wrote a pro-
gram to strictly follow all the timing rules
for CW, it wouldn't workverywell. There
is a great deal of variation in CW, as
everyone has a slightly different way of
sending it or tuning their keyer. With
straight keys the timing is most variable.
The best solution is to follow the "heuris-
tic rules" that we use in our heads when
we copy CW manually. These simple
rules are:

1. If an element is about twice as long
as or longer than a previous dit, then it
is probably a dah.

2. Following each element, recom-
pute a new dit and dah time based on
that element.

3. If a space is longer than 2.5 dits, it
is probably a character space.

4. If a space is longer than 2 dahs, it
is probably a word space.

Rule 1 makes the element decision
easy, and best of all, it works. Rule 2
helps the program track changing
speeds. Abrupt changes in speed are
tough to deal with, but by averaging the
last dit or dah with the current one, the
program adjusts quickly to speed
changes. Rules 3 and 4 seem to work
pretty well for a variety of spacing
experienced.

To set up the processor to work with
the program we need an external keying

Q
07

www.cq-amateur-radio.com March 2007 CQ 37

.A

a

Y
LO
N

I +
C, $,;;zz

> LL i
LO a L C,

.A

LO

LO a

-
4

3
d

L: ,i, 31 21 21 51 51 Y 1 9
-3

a

d
CU

X
CP

3 ? u ~ z a ~ z ~ s I L a c n n m e m c u - m m m
> > rY

Netmedia BX-24

+
3
o z f % m - , m * L O a b
c n c n a ~ a a a a a a a a

CI
LL
m
m
5

I I I

0

K

-

U
a

2 3
D

S ; .A

c)

O h
f S
8
E H 0

a!

2 2
L !a

0
V) 1

(~ r n e ~ ~ a c - r n m ~ ~ ~

>
LO

&
-

P c , 2 2 >
u L O $ $ L D

k i g cn
-4

2 2
ID
P(

n
0
_I

a
4

x
-4 ID (u

P -
a! m
E -4
C , L
a ! U
zcn

- (U m e L O I I

-D

Changes to CQBlinker: Existing lines(bold type) are shown with
action such as delete or insert after.

a visible CQ
Delete, then replace with
a visible and audible CQ.

Const LEDoff As Byte = 1 To set an ON condition
Insert after-

Const Tone As Integer = 1000 Cw tone is 1000 Hz
Const TonePin As Byte = 15 Send tone on pin 15

Call Delay (TDah) Wait TDah time
Delete, then replace with

Call FreqOut (TonePin, Tone,O,TDah) Wait TDah time while sending
tone

Call Delay (TDit) Wait TDit time
Delete, then replace with

Call FreqOut (TonePin, Tone,O,TDit) Wait TDah time while sending
tone

Table 11- Modifications to CQBlinker to add sound.

value "1" in it, a binary "00000001 ." This 1 will continually be
shifted to the left in the byte each time a dit or dah is detect-
ed and the respective "0" or "1" is shoved into the right side of
the byte. Look at fig. 4 to see the steps to building the char-
acter byte using the CW character "P" (. -- .) as an example.

To keep the program simple and fast, I broke the decoding
technique into several parts. The first part is determining when
a change of state occurs. Either the key has closed or it has
opened. A change of state makes it easy to time the length of
the previous state. When the state changes, we read the timer
of the processor that keeps time in approximately 2-millisec-
ond ticks and compute the length of the previous state. This
leads to the second part, which looks at key-up or key-down
intervals. If the current state is key up, then the previous must
have been key down and it is time to compare the key-down
time to the current dit length. This yields a dit or dah and the
character byte is modified accordingly. Conversely, if the cur-
rent state is key down, then the previous was key up and we
check to see if that represented the space between an ele-
ment, character, or word. If it's a character or word space, we
look up the ASCIIg representation of the received CW char-
acter we've built and send it to the display device. This lookup
requires a table built to allow the numerical representation of
the received CW characterto be used as an index which, when
added to the table's beginning, points to the corresponding
ASCll printable character.

To move from decoding CW sent by a straight key to off-
the-air signals requires some extra work outside the proces-
sor. The simplest method, given enough audio power, is to
rectify the audio and provide a bit of filtering with a capaci-
tor. To protect the processor we have to ensure that the level
of the filtered audio does not rise above the 5V logic level.
Fig. 3 also includes the simple audio rectification filter and
Zener diode input protection circuit. I used this to "listen" to
5 - 99 wpm CW audio (from powered speakers) that was cre-
ated on the PC by the Wavgen programlo, which creates a
playable audio file. This rudimentary circuit will work on quiet
receiver passbands with no adjacent signals audible. It does
require speaker-level audio to generate enough voltage for
the detector. A more sophisticated circuit employing narrow
audio filtering and automatic gain control is necessary for bet-
ter copy under less-than-ideal conditions.

An additional note on the above example is the use of a
2x1 6 character LCD display. Fig. 3 shows how simple it is to
employ such a device for output. If we wanted to incorporate
the processor and display in one ready-to-use package, the
LCDX pictured in fig. 1 would be an ideal choice. It also con-
tains relay drivers and scalable voltage measuring interfaces.

I hope the above examples demonstrate how easy it is to
become familiar with small programmable processors. Their
speed and flexibility allow them to replace boards full of dig-
ital logic and many analog circuits while allowing the design-
erlbuilder freedom to make changes and updates without lift-
ing a soldering iron.

A final note: You may have noticed that fig. 3 shows a ther-
mistor connected to Pin 13 of the processor. Curious? Go to
the website ~members.cox.net/desertlavender/bxprojects.
htm> for more ideas on using these computers on a chip.

Notes
1. <www.parallax.com>
2. BASIC-the Beginner's All-purpose Symbolic Instruction

Code-was developed at Dartmouth College. For more historical
information see: <en.wikipedia.org/wiki/Dartmouth-BASIC>.

3. <www.netmedia.com> and <www.basicx.com>
4. D. Nendza, "Anatomy of a Homebrew Messaging APRS

Tracker," QEX, January 2005, pp. 16-28.
5. One source of USB to serial converters is CQ advertiser West

Mountain Radio. See the ad for more information.
6. Peter H. Anderson: <www.phanderson.com/>.
7. Examples mentioned in this article, and more, are available at:

<members.cox.net/desertlavender/bxprojects.htm~.
8. Tokenize-see: <en.wikipedia.org/wiki/Tokenize>.
9. ASCll definition: <en.wikipedia.org/wiki/Ascii>.
10. Wavgen is available at <ahOa.org/AHOA.html>.

Ham Radio L3:s&~azin@ 0 4 2 CD - a
Brought to you by CQ & ARRL 4
Enjoy quick and easy access to every
issue of this ~ o ~ u l a r maaazine. broken . ,
down by years!
Three sets, each contaln~ng 4 CDs -

1968-1976 Order No HRCDI I

1977-1983 Order No. HRCD2 $59.95
1984-1990 Order No. HRCD3 $59.95

~ e t t i n g Started in Ham Radio Order No.
Getting Started in Contesting Order No.
Getting Started in Packet Radio Order No.
Ham Radio Horizons: The Video Order No.
Getting Started in Amateur Satellites Order No VSAT

Buy all 7 for your Club for only %%.
Shipping and Handling: US and Possessions -Add $5.00 for the first item,
$2.50 for the second, and $1 for each additional item.
FREE SHIPPING ON ORDERS OVER $75.00 (merchandise only).
Foreign - Calculated by order weight and destination and added to your
credit card charge.

CQ Communications, Inc.
25 Newbridge Rd., Hicksville, NY 11801

5 16-68 1 -2922; Fax 5 16-68 1 -2926
Order Toll-Free 800-853-9797

Visit Our Web Site www.cq-amateur-radio.com

March 2007 CQ 39

