small DOS-box com-
puter doesn't leave
you marny options for
attaching external
devices such as sen-
sors. Basically, you
can use the serial ports or the
printer ports, The serial ports wark
best for terminal-type equipment
such as modems or RF links, but
the printer ports can really shine
when you need 1o hook up several
medium-speed 'O devices.

In this article, Il show you how
you can add up to eight devices to
a single printer port, using little
more than a ribbon cable and
some C software.

The SPI

Traditionally, hobbyists have
used a printer port to drive ICs
such as an eight-bit latch. This
simple hookup lets you control
eight latch output lines just by writ-

even a few input lines, you end up
with a much more complex design.
The older paraliel ports only had a
few input lines, and even the
newer Expanded Parallel Port
(EPP} units aren't all that easy to
usa if you need a lot of input lines,

This KO limitation hasn't
stopped hobbyists from develaping
some clever designs, of course.
One of the better projects that I've
seen wired into a parallel port was
a device that could read and writa
GameBoy game cartridges. | dis-
cussed this project in detail in a
past Nuts & Wolts Amateur
Robotics eclumn; you can lock
through your stack of back issues,
or do a web search for GameBoy
and ReadPlus (the name of the
reader).

But to get the most mileage
out of your parallel port, consider
using it to drive a synchronous ser-
ial bus such as Motorola's Serial
Peripheral Interface, or SPL

five if you include +5 VDC to drive
the device. More importantly, each
SPI peripheral needs only one
dedicated printer output line. This
means you can add up to eight
SPI devices to a printer port.

Since the SPI bus is bidiree-
fional, you can use any mix of
input, output, or bidirectional
devices you need. This means you
wouldn't have any problem driving,
say, 32 channels of A/D, a couple
of elght-bit latches, and a pair of
frequency synthesizers off of a sin-
gle parallel port.

The SFI achieves this high
capability because of the way it
distributes data. All devices use
the same serial input line, the
same serial output ine, and the
same serial clock line; this last sig-
nal lets two devices synchronize
bus cperations. The device con-
trolling the bus — known as the
master — uses a dedicated line to
each other device as a selact lina;

SPland the Printer

ing a value to the parallel port. But
if you need more VO capability,
such as more latch output lines or

Port

Hooking up an SPI device,
such as a latch, requires only
three lines plus ground; a total of

DB-25 male (front view)

1
o o © ©

o o 0 o o o o

13

o o a o © o0 o o O

o o o o o

14 25
Direction Port &
Pin Signal (from PC) Bit
I *Strobe Output Control, DO
2 DO Cutput Data, DO
3 D1 Output Data, D1
4 Dz Output Darta, D2
5 D3 Output Data, D3
6 D4 Output Drata, D4
T D5 Output Data, D5
-] D& Output Data, D6
9 D7 Output Data, D7
10 *ACK - Input Status, Do
11 *Busy Input Status, D7
12 PaperEmpty Input Status, D5
13 Select Input Status, D4
14 * AutoFeed QOutput Control, D1
15 *Ermror Input Status, D3
16 InitPrinter Output Control, D2
17 *Selectln Output Control, D3
18-25 Ground

by Karl Lunt

bringing a selec! line low activates
the device on that line. Cnly the
selected device — known as a
slave — will listen or respond to
the host.

For example, if the master
(your PC} wanted to exchange
data with SP| device 3, it would
bring printer cutput port line 3 low,
leaving all other output lines high.
Then, your PC could freely send
commands serially over the com-
mon output line; only device 3
would process the commands.
Similarly, your PC could raceive
data from the common input line,
knowing that any data received
would have been sent only by
device 3.

The SPl exchanges data
between two devices simultane-
ously, This means that each time
the master sends a bit 1o the
selected slave device, the master
also reads a bit from the slave. The
master device must provide the
serial clock signal used by both
devices for synchronizing this data
2X|

Putting this anocther way, no

THE SIGNALS RVAILABLE

ON A PC PARALLEL PORT.

SCLK idles high
{CPOL=1}

SCLEK idles how
(CPOL=0)

TIMING DIAGRAM SHOWING THE RELA-

TIONSHIP BETWEEN CPOL and CPHA.

MASTER SENDS BINARY 1001 T0 SLAVE.

MOSI I
(CPHA=O)

MOS] i
{CPHA=)

data are exchanged unless the
master provides the necessary
clocking pulses. This means that
the master must always send
something to the slave, even if the
master just wants to read a byte of
data.

Mota that the SPI format does-
n't prevent you from sending com-
mands to more than one device at
a time, should that be necessary,

#include <o he

Finclude <oon o

Finchude <dos e

#include s b

#indsl TRUE

idefine FRLEE 0

#define TRUE Cueff

Fendt

ureigned ind dalapor

wresigned i

m gw e trohvalue;
g s ol

unsigned char datavala;

unesgned im WS

unsgned char burtier] 126

umsignad g ghdﬂl.

unsgned ﬁu MWEBFirst

unsgned addata;

ficat fdatz;

fical fuliscala;

woid Sathd0) char walal;

woid Fm&, ns}g'm‘:u vk

aSCR{unsigned char iny
char vale];

I
1
0 0

shell, though, the above
paragraphs show that lit-
fle is involved in moving
data between a host
device such as a PC and
any of several diffarent
SPl devices on a bus.
Anyone using the
Motorola microcontrollars
(MCUs), such as the
BB8hci1, likely will have
already used or read
about the SPI; it iz built

Just have the master pull all the
necessary select lines low before
sending any commands. However,
this is a fairly rare occurmence.
Generally, your software will deal
with only one active device at a
tirme,

There are some subtle timing
requirements that you have to
respect when using the SPI; refer
to the sidebar for details, In a nut-

N setumed afd value

iinaigned car phise, wekgned dhar poliy:

wekigned char ExchangeSPijursigned char vaks);

Eﬁﬂ mainfird &9, char s
umsigned K
unsigned char =
datapor = iTe;
statespon = dalaporis1;
waits =0
LMSBFrs = THUE;
fullscale = 4.096;
Flage>1) |
for {n=1; n:.ﬂ.l'g! T}

ra (7]
i~ P e
mm [} [

}

3 Selrmqo.nj.
whila (Ibhal)) [
1 printi{E

36 Ociober 1998/ Nurs & Volts Magazine

¥ o max204 AD

11§ this is an amument_
umant char

on angament char_
=

Wails = palargnbel 7 gel number of wail
b

into almost all Motorola
MCUs. Other chip makers, such as
Atmel, also sell MCUs with built-in
SPL

The printer port

I've discussed the SPI in some
detail, now il turn my attention to
the printer port. In its simplest
form, this is a mublti-wire bidirec-
ticnal port to the world; your PC

software sees this port as three
consecutive VO registers. The first
of these three registers is the data
port, a byte-wide output port that
your software can write to change
the states of eight lines. The next
higher register is the status port, a
byte-wide input port that your soft-
ware can read o sense the states
of various signals from the printer.
Finally, the control port is a byle-
wide output port that your software
can write to change the states of
various signals to the printer.
Each printer port, known io
your PG as LPFT1 through LPT4,
occupies three consecufive
addresses beginning at any of
three common /O addresses,
$3be, 5378, or $278. For example,
if your PC assigns LPT1 to VO
address $3bc, then your software
would use 53bc as the data port,
£30d as the status port, and $3be
as the coniral port, The PC's BIOS

mﬂ: i selact davica 0
i I el 0, ik, single, imamal ok
addata = ExchangeSPi), if gt meh of diata
addata <= B; ﬁxnhhmm:p
Tmhs?mam1 5@&"&%
£ {addsta = (3 i a i 5ot
alsn [
1 no, ol valld data T
I prmrumm Eih
%Prﬂ%ft i cinar ki buffar
I
imﬁmmqnwnﬂ
unsigned char m
t 50 shouid bo high...
}M[controbvalu &= Of; i *STROBE = 1 (active-iow)
1 :
i [coninotvaiug |= Cxl; N "STROBE = [{Bctve-low)
ouiporb{contmiport, controbalue];
for {rel; necweaits,) |
] controlalke];
1
}r@m&uwmwmm
urssigrnd char %
wsied char e,
B{iepha) { - HECPHA=D..
; {sn:lm]; 1 moed i set MOSI now
¥ = mporbshs pert; et vae of MISDH
Erwm_{wmmmuamn;
= mmugumm*mnt
o e LB
[e)
: _v:ip«&n(gamqnﬂ: = i get vahue of MESO
: conmoivalusl ;
for =l mewsits; 4+ |
controfvaluel; : b
Fotm A 0801 8 0B " if et “BUSY and stip othr bils

records the assignment of each
primter port to its O address in a
fable stored in RAM at address
0040:0008.

To lock at the printer assign-
ments of your PC, go to a DOS
prompt and fire up the DOS debug
program. When you get debug's
prompt, enter the command:

d 0040:0008 L8

debug will respond by printing out
the eight bytes of data stored at
that address. The first pair of bytes
gives the 0 address of LPT1, the
second pair gives the 'O address
of LPT2, etc. Note that since the
PC usas an Intel-style processor,
the YD addresses are slored LSB
first, =0 you will need to reverse
the order of the two bytes in each
address lo determing the trua 110
address.

Knowing how to use this table
means your software can look up
the /0 address associated with
any desired LPT port, even if the
BIOS or some other program
switches port assignments at
some time. This i5 important,
because to control SPl devices
uging a printer port, your software
must perfiorm low-level accesses
to the V'O registers.

Obwiously, you want your soff-
ware to bang the lines of the cor-
rect port, lest your laser printer
suddenly go wacko and start
spilling paper all over the place.

With mast of the basics out of

the way, we can start looking at the
available lines on the printer port,
1o assign these lines to the neces-
sary functions we neead 1o support
an SPI bus. Refer to the accompa-
nying table of signals available on
the printer port for details.

The maost important ling in the
SPI bus Is SCLK, which acts as
the system clock signal. We will be
bit-banging all of the SPI signals
from the PC, so we could choose
any line we want as our SCLK sig-
nal, but probably the easiest to
remember is “Strobe. This signal
appears on the printer connecior
as pin 1, and in the parallal port
registers as bit 0 of the control
port, Note the leading asterisk in
the signal name, "Stroba, This indi-
cates that this signal is active-low.

From the software viewpoint,
you have to write this bit with the
imverse of the desired signal, Thus,
to pull *Strobe low, your software
miust set bit 0 of the control port
high. Similarly, writing 2 0 to bit 0
of the control port will bring the
*Strobe output fine high. This can
take a little getting used to, but one
function will be usad for all manip-
ulations of *Strobe, =0 you only
hawve to get this concept right once,
then you can forget about it for the
rest of the program.

Mext up, we need a signal to
act as MOSI, tha master device
data output line. | chose *AutoFd,
which is bit 1 of the conirol port
and pin 14 of the printer connector,
for this function. As with “Strobe,

r
® DeseleciAll bring all chip sslecs 10 deseleciad siske

* This routing acoepts an unsigned char at indcates all
™ devices am ol selecied. Afier weiting Bus vake I e

* LPT daa porl, s soufing: Saves e value in 2 gobal

* wariahis for later usa.
k)

vold DesslaciABjunsigned char valus)
y wresignad char m
o b P
)
for (p=l; powaits: [
IM mmﬂ-ri'

r
-

taport, datavais);

TogghkSelects Ioggie one o mone chi, Stlect Enes

N or Bl walt sizes

* This nesing changes the chip seindt byle weiten o fa
" LPT dats peet. uglarm]I e paiiam hﬁnrrﬂﬂmmk

* s used o
* datinake,
"Iﬂ'l'.ﬂﬂm.

in the curmenl gichal

* Mote Bal you don'l use e routing 1o L bils on o
tham. Thes, this moutines senves 25
::m-ammm;mmum

» oft, only & lnggle

i Toglcfrad chr sk
wsignad char

MNHMS&MWMLPTMM

LS

W st the selected patiem

mm i sat it up

for (ne=ll; neowaiits; {
}

& da the wailing
datavaluel;

veid Sesormatunsigred char phass, unsigred char potarity)

ol = prlaiy;

I recand ciock i st

Data Port (1'0 address offset 0)
Owutpat only from PC

[o7 | 6 | ps | pa | o3 [b2 | oo | oo

Status Port (L0 address offset +1)
Input only to PC

[*Busy| *ack | PE | selext | *Emor | *RQ |

2]

Contral Fort (L0 address ofTset +2)

Output only from PC

] Dir }' lRQF.nhl"Se]mInl Init | 'ﬁutoFdI‘Stmhe I

discussed previously, this
is an aclive-low signal, so
you have 1o write the
inverse of the desired
value whenever your software
manipulaies this bit.

Then we have MISO, the mas-
ter device data input line. 1 chose
"Busy for this signal because the
documaeritation | was using for my
design indicated that this line was
active-high, meaning that my soff-
ware wouldn't have 1o deal with the
inversion discussed above.
Unfortunately, the documentation
was wrong; *Busy is active-low. |
only discovered this after complat-
ing the software and seeing the
inversion in my tests.

THE THREE REGISTERS OF
A PC PARALLEL PORT.

Rather than rewrile the soft-
wara and mod the hardware at this
point, | just added the imersion to
the code and left “Busy as my
MISO line. If you decide to rewrite
my software, you might swilch
lines for MISQO; PaperEmply or
Select might make befter choices.
For now, my code uses “Busy,
which is bit 7 of the status port and
pin 11 of the printer conneclor.

All that remains is assigning
the SPI salect lines. This sofiware
uses output lines DO through D7
as the eight device select lines

Forcs] T 58t ek lo e stalg
: o e o I ecord CPih satieg
void SeMOSTunsigned char value)
{ waired cur m;
1 (ke i ¥ sanding a 0...
”mahml:ﬁm sa1 MOS| 1o O {actiee-low)
L&a[N nope, musiba 1...
i cocfroivalon &= Ot ¥ el MDS| = 1 [acthve-kow
DO pontrTipor, [
for {n=0; nrowaits; fie) | st i out
) outportby] 3
i
:rs&eﬁmiudmmsﬁllmwgarﬂn]
wsired char v
unsigned char
ursigred char 5 indala;
indaty =
o éqmmﬁ; }{ Wioralbisin 4 e
o a4
-wmaﬁz
:lda:a-at'l; gmhmmmﬂ
¥ i¥) indata += 1; I and the bit we st mad
o= 1; I s e ot Eryle el
]
(] : if ro, seewding L5B firsl
MME,LH SEEMEM‘J]: N clock &
Indata »a= 17 A e niirw daita right one bk
if (v} inciata += DB, ﬁ'ad:l-ahﬂmLﬂ‘wad
i withod 3= 1p N i marn out
C PROGRAM

Muts & Volts Mogerine/October 1998 37

