THE ESSENTIAL (UIDE TO LINUX

RUNNING

MATT WELSH, MATTHIAS KALLE DALHEIMER,
O'REILLY TERRY DAWSON. axp LAR KAUFMAN

Running Linux, 4th Edition

Matthias Kalle Dalheimer
Terry Dawson
Lar Kaufman
Matt Welsh

Publisher: O'Reilly
December 2002

ISBN: 0-596-00272-6, 692 pages

The fourth edition of Rumning Linux delves deeper into installation, configuring
the windowing system, system administration, and networking. A solid foundation text for
any Linux user, the book also includes additional resources for dealing with special
requirements imposed by hardware, advanced applications, and emerging technologies.
Whether you are using Linux on a home workstation or maintaining a network server,
Running Linux will provide expert advice just when you need it.

Copyright © 2003 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (http://safari.oreilly.com).
For more information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the images of
the American West and the topic of Linux is a trademark of O'Reilly & Associates, Inc.
LATEX and TEX are registered trademarks of the American Mathematical Society.

While every precaution has been taken in the preparation of this book, the publisher and the
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

Table of Contents

Table of Contents

PrEface ..uueueiiciiiniiiiiiiiiiniincsnticsntcsttessstisssseessssssssssssssncsssesssssesssssessssesssssessssassassessasnes 1
Why People LiKe LINUXcociiiiiiiieiieeieee ettt nneas 2
Organization of This BOOK.........ccciiiiiiie e 4
Conventions Used in This BOOK.........cccoiiiiiiiiieeee e 5
HOW t0 CONACT US ..ottt ettt et e ettt e st e e sabeesseeesbeeesaree s 6
ACKNOWIEAZMENLSeceiieiiiiieciieieece ettt et e st e ssteesseesseesseeenseeseenseennns 7

Chapter 1. Introduction t0 LINUXcccicieesssercssssicssancssssssssssessasssssssssssessasssssasssssassssassssse 9
1.1 AbOUL ThiS BOOK ...ttt 10
1.2 A Brief HiStory Of LiNUXcccvieciiiiiieiiiesiecieeieeseeete ettt eve e 11
1.3 Who's USING LINUX?oiiiiiiiiiiiecieecteeeee st srte et e e sereeeireeestreesnaeeesaessnnessnneeenssens 14
1.4 SYSIEIM FEATUTES.veiiviieiiiieciieeie e crte et este e sreeerta e e st e e stbeeeeraessnaeesesaesssseesssneenssens 15

1.4.1 A Note on Linux Version NUMDETSccccerireiieiieeieeceesee e 15
1.4.2 A Bag Of FEAtUIES....cecciiiiieiieeieeieet ettt ettt 16
| Ny 1 =) SR SRR 17
1.5 SOFtWAre FEAtUIESccueieiiieiieiiecieeie ettt ettt st et eesseenseenns 19
1.5.1 Basic Commands and UtIHESc.eeoeeriierieiieeiieiie e 19
1.5.2 Text Processing and Word Processing..........ccoccueevievieerieicieerieenieseeeee e 20
1.5.3 Commercial APPlICALIONS........c.eeeviertieriieiieerieeteecteeriee e eteesieesereeeseeseeseneenseenns 23
1.5.4 Programming Languages and Utilities.........c.ecvvereeriienieniieniiereeieeeee e 24
1.5.5 The X WiINAOW SYSEEIMcccuviiiciiieiiieeiieeciieesree e sereeesereesreeesreessneesssneessneeans 25
1.5.6 KDE and GNOMEoooiiiiiiiieeeeeee ettt s 26
1.5.7 NEtWOTKINE ...ttt ettt ettt et e st e et eeseesnaeenee e 26
1.5.8 Laptop SUPPOIL....ceiiiiiiiiiietieeette ettt ettt et ettt e et e sbe e e ebeeesaeeeea 28
1.5.9 Interfacing with Windows and MS-DOSccoooiiiiiiiier e 28
1.5.10 Other APPIICALIONSeccvieeiiieiieiieiieeieesitetesteete et e saeebeeseeesseessseesseesnnesnseenns 29
1.6 About LinuX's COPYTIZNL.....cieciiiriieiieeieeiieiieeieete ettt e e e e sae e esaesnaesnseenee 30
1.7 Open Source and the Philosophy of LinuX........ccccceeeiieiiiieiiiiieiccie e 31
1.7.1 Hints fOr UNIX NOVICESevveeieriirierieeiienieeienieeiesie sttt sae e senenees 34
1.7.2 Hints fOr UNIX GUIUScooveriieieniieienieeiesieeie ettt nnes 35
1.8 Sources of Linux Informationcccceeiieiiiiiiinieie e 36
1.8.1 ONline DOCUMENLScoiiiiiiiiieiiieieetieee ettt ettt 36
1.8.2 Books and Other Published WOTKScccooiiiriiniiiiiececeeeeeee 36
1.8.3 USENET NEWSZIOUPS ...ceeuetieetieiiiieeiieeeiteeetee ettt e et e e stteeesbteesbeeenabeesbeeesbeeenseeeens 37
1.8.4 Internet Mailing LiStSccceeririiei ettt 37
1.9 GEtING HEIP ..ottt et ebe e e ssaesnaeensaesneeennennne 37

Chapter 2. Preparing to Install LinuX.......ccccceeveeeseeserisencsnecseecsnncnee 41

2.1 Distributions Of LINUXccceieeiieiieiieiieiie ettt e e eseesnee e enes 41
2.1.1 Getting Linux via Mail Order or Other Hard Media..........ccocceveevirieniniencennene. 41
2.1.2 Getting Linux from the INternetcccoevveviieciiiiienie et 42

2.2 Preparing to INStall LINUX......cc.oovieiiiiiiiieeiecie ettt 43
2.2.1 InStallation OVEIVIEWc.eeveruirieiiriieiieiiesieeienteseesie e e steentestesaeensesneeseeeneenaeenes 43
2.2.2 RepartitionNing CONCEPLS ...veevrieerreerrieairiereteeesereeereeesreesssreesseesssseessesessseessseeens 44
2.2.3 Linux Partition REqQUITEMENLScccueeiiieiieiiieie e 45
2.2.4 Repartitioning YOour DITVEScccceeiieiieeieee ettt 47

Chapter 3. Installation and Initial Configuration 50
3.1 Installing the Linux SOftWareccocciveeiieiieeieeeeeeeee e 50

3.1.1 BOOtNG LINUX ..eeiiiieiiieie ettt ettt et esnees 50
3.1.2 Drives and Partitions Under LinUX.........ccccoeeiieiiieiienienieeieeieeeeee e 56

Table of Contents

3.1.3 Creating Linux Partitionsccccovcviereuieeriiririiescieeerreeesireesteeesereesseessssneeseneeans 58
3.1.4 Creating SWaP SPACE.......eeerviirereeerriertteeiereeesereesseeesreesssseessseesssseessseessssessssseenns 62
3.1.5 Creating the FIleSYStEmSc.cecieiiiriieieieeie et 63
3.1.6 Installing the SOtWATrecociiiiiiiiiee e 63
3.1.7 Creating the Boot Floppy or Installing LILO..........cceioiiriiieiieiieieeeeeeeeee, 65
3.1.8 Additional Installation Procedures............ccccveeieeiieciienienieecieeeesee e 66
3.2 Post-Installation Procedures..........c.cecverieioiienieniieieeeesee et 66
3.2.1 Creating @ USET ACCOUNTcccveeriieerieeeiieiiesieeeteeteesteeseeeseeseesseesssessseesseesssessns 66
3.2.2 Getting Onling HElPcoovvieiiiiieciieiieeeeeee ettt 67
3.2.3 EAiting /@tC/TStaDooviiieiieiieiieeeeteee ettt 68
3.2.4 Shutting Down the SYSteIM.......c.cciviiiiiiiiiiiie et sree e e e sreeesereeens 69
3.3 RUNNing into TTOUDIEccuvviiiiieiie ettt et ere e etre e e e seraeennae s 70
3.3.1 Problems with Booting the Installation Mediumccoceeiieiiiiinniieieeee, 71
3.3.2 Hardware Problemscccoeiiiiiiiiieeieee et 72
3.3.3 Problems Installing the SOftwarecccoeiiriieiieiieeeeee e 77
3.3.4 Problems after Installing LinUX........cccceeeierieniiiniieieeceeeie e 78
Chapter 4. Basic Unix Commands and Concepts 82
4.1 LOZEING IN .ottt ettt e st e et e s e s naeseneenseeenneeneeeans 83
4.2 Setting @ PASSWOTAcccieiiiiiiieieeeece ettt st e e e eseaeenee e 84
4.3 VITTUAL CONSOLESvieeiieiieiiieieeieeteste ettt ste et e st e seaeenseeseesseessneesseenseesseennns 84
4.4 Popular COMMANASc.eevuiieiieiieiiierieiieereesteeseteeteeveesseeseaeesseeseesseessaeesseesseessesnsns 85
44,1 DITECTOTIES «..ovvvevieuiiiieieeititeeteet ettt sttt ettt ettt et ettt ene e 85
4.4.2 LAStING FIlES..uuiiiuiiiiieiiecieeieee ettt et seveesbe et e saeseseensaesnaeseneenne 86
4.4.3 Viewing Files, MOTe OF LeSS.....c.eieviiiiiiiiiiieciiieriee ettt ereesteeesereeseneesneeens 87
4.4.4 SYMDBOIIC LINKS ...ooooviiiiiiiieiieiicciiecte ettt et e r e aeesene e 88
4.5 SHEIIS ...ttt ettt ettt e e teeneeneeenteenee e 88
4.6 Useful Keys and How to Get Them to Workcocooiiiiiiiiiiiiiieeee e 90
4.7 TYPING SNOTICULSeeeeeietieeieeie ettt ettt e e e sneeeeae e s e sneeeneeenee 91
4.7.1 WOrd COmMPLELIONcccviieeiieiieiieiieeie ettt ete ettt e steebe e e saeseseensaesnneseseenne 91
4.7.2 Moving Around Among Commands.............cceeeveereereersieesieesiienreeeeeeeesseeseeennns 92
4.8 Filename EXPANSIONc.cccvievvieriieniieeieeieeseesteereeteesteeseseesseesseesssesssessseessessssensseenns 92
4.9 SaAVING YOUL OULPUL ...ooevvienriieeiieieeieeeieeteeeteesteeteebeesteesseeesseesseesssesssesnseesseesssensseenns 93
4.10 What Is 2 Command?ccceceviririmininiineneneneeeeetee e 96
4.11 Putting a Command in the Backgroundc.coveviiiiiiciiinieiieciece e 97
O B\ 301 1 B o Tt SRS 98
4.13 File Ownership and PermiSSionsccccoecieiiiriiierierieeie et 100
4.13.1 What Permissions MEan...........ccceevieeiuierierieeieeieeie et eee e 100
4.13.2 OWNETS ANA GTOUPSeeeueieeieiieeieeieeeiteeee et et eseeeteesseesaeeseeeseesseesnseeneeneas 101
4.14 Changing the Owner, Group,and Permissionsc.ccceeeevverierieeceeeneesieeveeneenn 103
415 SHATEUP FAlES...cueiiiiieiieiieeteeieete ettt st e sbe et e e s e eseenseenneas 105
4.16 ITMpPOortant DITECLOTIESccueeruveeerieriieiieeieeee e eere et e seesreeteessaesebeesseessnessseesseessnas 107
4.17 Programs That SETVE YOUc.cccieriiiciieieeiieeie et e e ste e et e seaeseveesveeseeseseenseenseas 109
418 PTOCESSES ..ottt et s 110
Chapter 5. Essential System Management.... ceeresseessnnessnstesastssnsnenens 114
5.1 Maintaining the SYSteIM........cccueiviiiiiiiiieiiecie ettt eeebeebeeseaesene e 115
5.2 BOOtING the SYSIEMecviiiiiiiieiiccieceeee ettt et s ae e e v esbeebeeeaseenneens 118
5.2.1 Using @ BOOt FIOPPY -eeeueieiieiieieee ettt 118
5.2.2 USING LILO ittt sttt ettt st et sneenes 120
5.3 System Startup and InitialiZationcccecieriieiiiesierieee e 126
5.3.1 Kernel BoOt MESSAZES........ceecuieiieriieeiieeiieiieeiie et eieeeeeseteeseeteesseesseesnseenseennes 126

ii

Table of Contents

5.3.2 init, inittab, and 1C FIlES......coovvvviiiiiiiieeee e 128
5.3.31C FILES et et 130
5.4 SINGIe-USET MOAEcoriieiiieieeieeeeeee ettt et ettt et esaeeteesneeeneeens 132
5.5 Shutting Down the SYStem........c.ceviiiiieiiieiieeie et 133
5.6 The /Proc FIleSYSIEMeeouieeiieiieiieeieeie ettt ettt ettt ettt e e ae e e eeeneeens 134
5.7 Managing USEr ACCOUNLScecuerueeriertirieniieieniteiesie sttt sie ettt sbeetesseenaesaeens 136
5.7.1 The passWd Fil.......cccveoiiioiiiieiecieee ettt 137
5.7.2 ShadOw PaSSWOTSccoccuiuiiiiiiiiinieieietntnceeee st 139
5.7.3 PAM and Other Authentication Methods...........cccecvvivieiniiniininniniiincee, 139
5.7.4 The GIoup Filecccvveiviiiiieiieieceeeeeeteeeete ettt beebe e naesnve e 140
5.7.5 Creating ACCOUNTSccuvviirureeerieeieeeteeesreeetreesseesssreessseeessseesssaeesssessssseessseeanes 142
5.7.6 Deleting and Disabling ACCOUNTS.........ccccveeieiieiiiieerieeciee e eiee e sereeereeenes 143
5.7.7 Modifying USEr ACCOUNTSceceiriieiieriieeie e et eieeseeeete et e seeeseeeeseesseenes 144
Chapter 6. Managing Filesystems, Swap Space, and Devicescceceereecreeesenrcseccenens 145
6.1 Managing FileSYStemMScueeiuieiieeiieeiieiie ettt ettt e e eneeens 145
6.1.1 FIleSYSteM TYPES....eieciieeiieiieiieeiieeteettesieeste et e e teesteesaeeseebeessaesnaesnseeseesnnenes 145
6.1.2 Mounting FIleSYSLEMScccveviirciieiieiieeieeteeteenieeseeete e e steesaesreeseesanesneeens 148
6.1.3 AUtomOUNting DEVICES......ccuveriieeiieiieiieeie ettt et et eeee et eeaeebeeseesssesnseens 153
6.1.4 Creating FileSYSEIMScc.ieviieriierieeiieiieete et ettt et aesae e e e snaesnseens 155
6.1.5 Checking and Repairing FileSyStemscceecvieeiienieniiesiieciierie e 157
6.2 Managing SWaAP SPACEcceeevvierieriieiieiiesieeeteeteesteesteeeseeesseesseesssessseesseessessssessseens 160
6.2.1 Creating SWaP SPACE......cuieviierieerieeiietiereeeteeteesteesteesseeseesseessaesssessseesseesssenns 161
6.2.2 Enabling the SWap SPACEcccvevvieeiiiriieiieiieceeeee ettt e 162
6.2.3 Disabling SWaP SPACEccccvierriiieriieetiieeireeereeesreesreeesreeessseesseeesssesssssessssees 163
6.3 DEVICE FIlES...ceuiiiiiiiieiete ettt ettt ettt et 163
Chapter 7. Upgrading Software and the Kernel 167
7.1 Archive and Compression ULHItIesccueecieerirriiieiieiiere et 167
7.1.1 USING GZIP ANA DZIP2 ...eoneiieiiieieeeeee ettt ettt 168

T L2 USINEZ AL .ttt sttt s sbe ettt sb et e b et saeebenaeens 170
7.1.3 Using tar with gzip and BZIP2ccceeiererieniiiinienieieeteeeeeee e 175

T 1A 1A TTICKS oottt 177
7.2 Upgrading SOTEWATEccveeiieiieiieciecieeeee et etee e be e be e eessaeesbeessaesnneens 178
7.2.1 Upgrading LIDTATIEsc.cccvieriierieeiieieeseeeteereesteesteeereesseesseessseeseeseesssessseens 179
7.2.2 Upgrading the COmMPILET.........c.ecoieviiiiiiiiieitieceeeee et 183
7.3 General Upgrade Procedurecocveeiieiiieiiieiieieeieeee et sne v e 184
7.3. 1 USING RPM .t 184
7.3.2 USING dPKE aNd QPL.....eeeeeieeieeieeee ettt 188
7.3.3 Upgrading Other SOftWareccceeiieiiieiieeieeeeee et 193
7.4 Building a New Kernel..........coooiiiiiiiieiieieeeeeeeeeee et 196
7.4.1 Obtaining Kernel SOUICESc.cccieriieriieiiesiieeieeie ettt 198
7.4.2 Building the Kernel...........cccveviiiiieiieiieiecieeie et 199
7.5 Loadable DeVICe DITVETS........cc.ccueiiiiiiiiiiiiieieiieieiteieeeettee et 207
7.6 Loading Modules Automatically...........cccoeevieriieciieciieniienieeieeeiiesee e eve e 211
Chapter 8. Other Administrative Tasks 212
8.1 MaKing BaCKUPS.....ccceeiiiiiiiiieiii ettt ettt ve e e v eve e e ssaeesbeeeaesnneens 212
8.1.1 SIMPIE BACKUPS ...ccuviieiiiiiiiieciieeee ettt et reeesereessrneenes 213
8.1.2 Incremental BackUupsccoeuieiiiiiiiiii e 217
8.2 Scheduling Jobs USING CTOMNcoeiieiieiieeiieieeiie ettt e e 218
8.3 Managing SYStEIM LOZSc.eeiieiiieiieiieeie ettt ettt et aeeseens 223

iii

Table of Contents

8.4 Managing PrinNt SETVICESc.eeevvvieririeiriiieeiieerreesrereesreeetreessereessseeessreesssesssssessssees 225
8.4.1 Checking Printer HAardware..........cccccevveeviieiiieeiiie e cee et eveeesree e e svee e 227
8.4.2 Gathering RESOUICEScocuieiieiieiieeie ettt 229
8.4.3 Choosing Printer SOftWarecoccieviieiieiieeeeeeeeee e 229
8.4.4 Checking Print UtIIItIESceouieieierieeie et 230
8.4.5 Setting Up the Printcap Filecccooiiiiniiiiniiiiiiieceee 232
8.4.6 Configuring GROSESCIIPL......eecierieiieeieerieeie ettt seee e se e 237
8.4.7 PNt FIIETS ...cviiiiiiiiiieictete ettt 239
8.4.8 The Nenscript FIItercocviiiiieieciecit ettt 241
8.4.9 Magic Filters: APSfilter and AIternatives.........ccceeeveeeveereeeiiecieeieeree e 242
8.4.10 BSD Print System Elements: Files, Directories, and Utilitiesc.......... 243
8.4.11 Exercising the Printer Daemoncccueevveivciieeniieiieeciie e eieeesreeeenee e 246
8.4.12 Controlling Printer Services With IpC........ccoeoiiiiiiiinieeeeee 247
8.4.13 Printer OptimiZationccecuieiiieriieeiieeieieriieeie et e st eeeee e e teeseeeseeeeseesseeenes 250
8.4.14 Printer System Troubleshooting...........cccoeceeeiieiieiienieeeeeee e 251
B4 15 CUPS ...ttt ettt ettt ettt b et besbe bt 253

8.5 Setting Terminal AttriDULESc.cccvieriierieeiieteeee ettt ebeeseaesnae e 254

8.6 What to DO in an EMETZENnCYcccvevvieriiieiieiieeieeeeeieeiee et 254
8.6.1 Repairing FIleSYSIEMScc.eevieiiieiieiieeie ettt ettt e e eene e 256
8.6.2 Accessing Damaged Filescccueviieiiiiienieeii ettt 257
8.6.3 Restoring Files from Backup..........ccoeevieviierieiiieiieieieeeceeeeeeee e 258

Chapter 9. Editors, Text Tools, Graphics, and Printingcceeceeevereveecsenscercsnecnnene 259

9.1 Editing FileS USING Vi......covuieivieriieriieeiieiiesiieseeeteesseesieeseessseesseesseesssessseessessssesssenns 259
LT B B 2y 2oV USRS 259
9.1.2 Inserting Text and Moving Around............ccceeeeveeerieneeniieceeseecee e eeree e v 260
9.1.3 Deleting Text and Undoing Changescceeeerierieeniienieenieeie et 261
9.1.4 Changing TeXtcceeiieeiieieeie ettt ettt et ettt e et e e te e st e s stesaeeseesneesneeeas 262
9.1.5 MOVING COMMANGSccoueieiieiieriieeieeteete et et eete et e eeeeaeeeeesseesneeeneeesneesneeens 263
9.1.6 Saving Files and QUIttING Vi....c..cccvevieriieiieiierieeieeee ettt eneeens 263
9.1.7 Editing ANother File.......c..ccieiiiiiieiieeeeeeeeeee et 264
9.1.8 Including Other Files.........cccvevieiieriieiiecieeie ettt eve e veeeveenreens 264
9.1.9 Running Shell Commands...........cccecueevvierieeiieiiienieeneesre e esieeseesveereeseeseae e 264
9.1.10 Global Searching and Replacing...........ccceevvevereiieciieneeniieieecieeeesee e 265
9.1.11 Moving Text and Using REZIStEIS.........cccvrrriireririierieeerieeeieeeeeesreeeseveeseees 266
0. 1.12 EXEENAING VI veutetieiieiieiieeieeiestee et sttt ettt entesbe e sbeeneesaeensesseennens 267

9.2 The EMACs EdItOrcoeiuiiiiieiieiieie ettt 268
9. 2.1 FITING T UP ittt ettt ettt ettt s teeee e s e sneeens 268
9.2.2 Simple Editing Commands............cccueeruierierireieeeesieeie e 269
9.2.3 Tutorial and Online Help........ccooeiieiieiiiiiieeiieeeeeeeeee e 272
9.2.4 Deleting, Copying, and Moving TeXt........cccccverierieniieriiierienienie e 273
9.2.5 Searching and Replacing.........c.cccvvevuieriiiiiieiiesieeee ettt 274
0.2.6 IMIACTOS ...ttt 275
9.2.7 Running Commands and Programming within Emacscccecoveeuvieiennnns 275
9.2.8 TaloriNg EMACSooovviiiiiieiiieiieieeieeeeete ettt st eve v e e sraeeene e 277
0.2.9 Regular EXPreSSIONSc.cccviiviieriieeieeeieieieesteesieeseeereeereesaeeseneeveesseesseeseneesneenns 280

9.3 Text and Document PrOCESSING.........ccueevvieriieieieiiereeeieeeee et et seeereeveesreeseseesreens 281
0.3.1 WOTA PrOCESSOTS. .. .eieiieeieeiiieieeeiteei ettt e te et et et e e te et e saeesnaeeteeseeeneeeneeens 282
932 TEX and LATEX ..ottt sttt sttt sneens 283
9.3.3 SGML, XML, and DOCDOOKuvviiiiiiiiiiiiiiiieee ettt 288
LB T (o) i USSP 290

iv

Table of Contents

0.3.5 TEXINTO ..ttt ettt ettt et ettt et e ettt e s bt e e nteete e bt e enteeeeens 293
0.4 GIAPNICS .ooveveieiieeciieee ettt ettt e et e e st e e s tr e e s staeessreesstaeesstaeessreeasraeesreearereenrrens 299
9.4.1 IMAZEMAZICKeiieieeiieii ettt ettt ettt et e e e te e s e e neeeneeens 300
9.4.2 The GIMP....c..ouiiiiiiieeeee ettt 302

9. 4.3 POVRALY ottt bbbttt e 303
9.5 Configuring and Using LinuxX Audioccceeirieririiiienieiinienesieeeeeeseeie s 303
9.5.1 A Whirlwind Tour of Digital AUdiocceeveeriiieiiieiieeieeeeeeee e 304
0.5.2 Audio Under LINUXcccuevuirieriirieieniiesieeieie sttt 307
9.5.3 Installation and Configuration.............cceeeeereercieecreeneerreeseeseeseesaeeseeseeseneens 308
9.5.4 Linux Multimedia APpliCAtIONScceerierierciierieerierreecreesteesaeeaeereesneseneens 313
T T U T o U RSP US 314
0.5.0 RETETEINCES ...cueeieieiie ettt et ettt e 315
LB O30 5 4111310V USUSRR 315
9.6.1 How the Printing System Processes a Queued File...........ccocooeviiniiiiiennnnns 318
9.6.2 Nenscript and ENSCTIPL......eeruierieeiieiietie et ettt et e eee e e et e ssaesaeeeeesneesneeens 320
Chapter 10. Installing the X Window System 323
TO.T X CONCEPLS ceeuuvieeniiieeiieeiiiee ettt e et e ettt e et e e sbee ettt e sabeeeateesateeesaseesbeeesaeeesbaeesaseeennees 324
10.2 Hardware REqQUITEMENLSccevieeiieiiieiieeiieneeete et e seae e e 325
10.3 INStalling XEFTEE80.....ccvieiieeeiieiieieeeee ettt ettt e ae e e snseenseenees 328
10.4 Configuring XFTEE8EO0c.eeeiieiieiieie ettt ettt et ae e e saeeseeneas 330
10.5 RUNNING XFTEEEOeevvieeiieeiiietieieeeee ettt ettt st et tae s veebeesaaeseseensaesneas 338
10.6 RUnNning into TTOUDIEccccvieiiieiiieiiicieeeereeete ettt 338
Chapter 11. Customizing Your X Environment............eecveicssecssnncssnecsssncssnnscsssnenes 340
11.1 Basics of X CUStOMIZAtIONceeiuieriieiieeieesie ettt ettt et seee e 341
L1101 ANttt ettt ettt et e st et e st et e bt seeebeeneentesneensesneens 341
11.2 The K Desktop ENvIronment............cccecverieriieiienieeieeie e 344
11.2.1 General FEatures.cceouieiiieiieiie ettt ettt e s 344
11.2.2 Installing KDE........ccoo ittt 346
11.2.3 USING KDE ...ttt s 348
11.3 KDE APPICALIONSeeovvieiieeiiieiieiieeie ettt e steeteeieesieesaeeseesseesneesnseenseenssesnseenneas 353
11.3.1 konsole: Your HOme Base.........cccevuiriiriiiininienieeiesieeeee st 354
L1.3.2 CLOCKS ..ttt e 357
11.3.3 KGhostview: Displaying PoStSCIipt..........ccceecveeeiiirieiciieiieriecieere e 357
11.3.4 Reading Documentation with KONquUErorc.cccovevevierieeieeiiieiieeecie s 359
11.4 The GNOME Desktop ENvIironment............ccceceveeevieviereeecieeneesee e eseee e 360
11.4.1 Installing and Updating GNOMEcoooiiiiiiiieee e 360
11.4.2 Core Desktop INterface.........c.ceoeeiiieiiieiieeeeeee et 361
11.5 GNOME APPICAIONS......ueiiiiiiiieieeiieeie ettt ettt ee et e e e eeeeeees 366
11.5.1 Ximian Evolution: Mail, Calendar, and Contactsccccceovvevuvvreeeeeeeriiennns 366
11.5.2 Gnumeric SPreadSheet........oocviiiiiiieciieieee et 369
11.5.3 gPhoto, the Digital Camera TOOL..........ccceeevieeiierierieeiieieeeeree e 369
11.5.4 Abiword Word PrOCESSOTccueviiiiiriieiieiieiiriiete sttt 370
11.5.5 Additional Applications and RESOUICESc.eevvrriieriieriienieeieeieereesee s 371
11.6 Other X APPLICALIONSecveeeeiierieiiecieeereeteeseeereeteesteesereereesseesveesveesseeseseenseesneas 371
11.6.1 The X Resource Databasecccoeeeuerieniinieiesiieie et 371
11.6.2 Emacs and Other Editors........ccoeoviiiiierieieniieeseeeeeee e 374
Chapter 12. Windows Compatibility and Samba.............cuvvverenvvrisvniisvncnsercssnnicsnnenes 378
12.1 Sharing Disks With MTOOIS........cccciiiiiiiieieee e 379
L R B 4 15 Lo RS PTISRTRRRRR 381

Table of Contents

12.2 Sharing PartitiONscccueeeriieioieririieeieeesieeerreesreeesreeseseessreeeseseesssneesssaeesssessnnns 383
12.2.1 Mounting Windows Sharesc.ccccvierereeiiieeniieeiieeeieeesveesneeesereesnneesnee s 385
12.2.2 Using Samba to Serve SMB Sharesccccooveriiieiieiieieeeeeeee e 388
12.2.3 File Translation UtIItIEs.......ccceeierieriieieeie et 395

12.3 Running MS-DOS and Windows Applications on LinuX.........cc.ccceeeeevveneeeennnen. 397

Chapter 13. Programming LANGUAZESccccevveeeruensueissnnssnrcssncsnssssssssncssnesassssssesseesaness 399

13.1 Programming With SCCc.eeoiiriieiiieiiecie ettt 399
13.1.1 QUICK OVEIVIEW ..cvvviieivieeeiiee ettt ettt et et eveeeeaaeeeveeeeare e eeareeennens 400
13.1.2 GCC FRALUTESveieeiieeeiieeiee ettt sttt e s aae e st e stseesneeesnnee s 402
13.1.3 BaSiC ZCC USAZE ...eevieeiiieiieiieeiieeieeiiesit ettt ete et e et e teessaeesseebeessneenneens 403
13.1.4 Using Multiple Source Files.........ccceeiiiieiiiiiiieciieciec e 404
13.1.5 OPLITUZING....cccovieeiieeiiieesteeecieeesteesreesreestreesereeaseseeassseesssaesssesssseesssseessees 405
13.1.6 Enabling Debugging Codeccceeiiieriieiiieieeieeeeee et 405
13.1.7 More Fun with LiDIariesccccoeeeeiiieiienieeeeeeee ettt 405
I3.1.8 USINE CAr oottt ettt sttt st e te e e e nbesseensesseeneesneensenneens 408

13.2 MAKETIIES ..c.eienieiieceieeieeiee ettt ettt ettt e st e sste e seesnaesnseenseensaesnneenneas 409
13.2.1 What Make DOESceecvieriieiieeiiieiieiieete ettt ettt te e eesseeseesnaeenseens 409
13.2.2 Some Syntax RUIES........c.cccieriiiiiiiiieiieeieeie ettt 412
13.2.3 IMLACIOS ..ttt eueteeeiite et e ettt et e st e ettt e e e st e et eesabee e sabee e steesabaeeseeesneeesabeens 412
13.2.4 Suffix Rules and Pattern RUIEs..........ccoociieiiieiieriiieeeeeeeee e 414
13.2.5 Multiple COMMANAS........ccceeeiiiriieiiieiieiieeie et ere e sae e e e e seaeesneens 415
13.2.6 Including Other MaKefiles.........cueeviiecrieriieiieieeeeree et 416
13.2.7 Interpreting Make MESSAZES........eevveerrieerieieesieesieeeeeesieesteesseesseeseesseesssesssenns 417
13.2.8 Autoconf, Automake, and Other Makefile ToOIS.........ccccceevvvvvvviviieiiiiiiinnnn, 417

13.3 Shell Programming...........ccccveerveeeiieesreeerieesieeesreesereesseeessresssseessseessssessssseessnes 418

13,4 USING POTL ...ttt et enae e enees 421
13.4.1 A Sample Programcccoviiiiiiiieiieee ettt 422
13.4.2 MOTE FEATUIES....ccoueieiiiiieiie ettt et ettt et n 424
13.4.3 ProS Qnd COMS.....ccueeeuiieiieiieeiie ettt eiee et ettt et e s e e e ee e teesseeeseese e seesnseenseens 427

I35 JAVA. ettt ettt e sttt e et e e sttt e e e nteesaees 428
13.5.1 The Promise of Java, or Why You Might Want to Use Javac...c.ccvennen. 428
13.5.2 Getting Java for LINUX........ccocveeiiieiiieiiieeiieieeieeieesee et eseeeve e e e e seneesneens 430
13.5.3 A Working Example of Javacccecuieriieciieiieieccieceeceeese e 430

13.6 Other LangUAZESc.cecvieiieciiieiieieecieecte ettt sere e esteesteeesve e teeseveeeveenseesaseenseenneas 432

Chapter 14. Tools for Programmers 437

14.1 Debugging With dDc.ooiuiiiiieiee e 437
14.1.1 Tracing @ PTOZIaMcccveeiieieee ettt e e ens 437
14.1.2 Examining a Core File........coeciiiiiiiiiiieieiee et 441
14.1.3 Debugging a Running Program............cccceecveeeiiecieenieniieeie e 446
14.1.4 Changing and Examining Datacccoeeieeiieiiiiiieieeeeeee e 446
14.1.5 Getting Information............cccuveeieiieiciieciierie et ere e see e ereeseaesnne e 448
14.1.6 Miscellaneous FEAtUIESsccevieriirieniirieiiriieieeieeee sttt 449

14.2 Programming TOOIS........cccveriiiiiiiieieecie ettt e te e teeseae e eeaesaneeanees 453
T4.2.1 DEDUZEETS..eveeeiieeiereeeirieeieeesreeetteesreeeereesebeeestbeesssaessssaeessseessseeessseessseesssees 453
14.2.2 Profiling and Performance TOOIScccoevvieriierieiiieiieieeceecee e 453
14.2.3 USINE SITACE ..eeevveeiereeeierieeiieesrteestreessreessreesseeessseessseesssseessssesssesessseessssesssseees 456
14.2.4 USING Val@INA ..coneiiiiiiieiee et 458
14.2.5 Interface Building TOOIS.......coeeiiiiieiieieeee et 460
14.2.6 Revision Control Tools — RCS......cooiiiiiiieeee e 463
14.2.7 Revision Control Tools — CVS......cooiiiiieieiee et 466

vi

Table of Contents

14.2.8 PatChing FileScccvviiiiieiiieiciee ettt etee et s a e s s 470
14.2.9 INAenting Codeuueivviiiriiieriie ettt ete e e see e srre e aeeseraeestreesnneessnee s 472
14.3 Integrated Development Environments.............occceeierieriiesieniieesieeceesee e 473
Chapter 15. TCP/IP and PPP..........ieicueniisnecnennensnnesnecsnecssnesnscsceses 475
15.1 Networking With TCP/IP........cccuiiiieiee e 475
15.1.1 TCP/IP CONCEPLS ..veevveenrieiiereieeireieentieeeteeeeesseesseesseeeseesssesssesssesseesseessesnsenns 476
15.1.2 Hardware ReqUIrEMENtScccverieeeiieniienieeieeieeseeeieeteeieesaesseeseessnesnneens 482
15.1.3 Configuring TCP/IP with Ethernet............cccoeoveeieiiiiciieieeeecieeeeeeeie s 483
I5.2 DIAL-UP PPP ettt te ettt s et ane s 493
15.2.1 Basic PPP Configuration for Modemsc.cccoveveerieecieeneenieeie e 494
I5.3 PPP OVETr ISDIN ...ttt et ettt st 500
15.3.1 Configuring Your ISDN Hardwarecccccveevieiieieeiiieeieeciee e 501
15.3.2 Setting Up Synchronous PPPcccooiiiiiiieeeeee e 504
15.3.3 And If It Does Not WOTK?oooiiiiieiieeeeee e 507
15.3.4 Where to GO from Here?cccooiiiiiiiiiee e 507
I5.4 ADSL .ottt ettt b et be e naen 508
15.5 NFS and NIS Configurationc.cccceerveecieenierieeesieeseeseeeieeseeseesveeseessnesseennees 509
15.5.1 Configuring NFSoooiiiieieeceeeetee ettt ees 510
15.5.2 Configuring NISoooiiieieeeeeeeeete ettt ee e e veeseaesnae e 511
Chapter 16. The World Wide Web and Electronic Mail...........ccceceeveecreiserscnncsnccanene 514
16.1 The WOrld Wide WEDbc..oooiiiiiiiiiiieieceieeeeeeeeee e 514
16.1.1 Using Konqueror and Other Web Browserscccoccvvecieereenieecieecieenieenens 516
16.1.2 Configuring Your OwWn Web Servercccocvvveiiiciieiieiiieeeeecee e 519
16.2 Electronic Mail.........cooiiiiiiiiieeeee et 525
16.2.1 The POStIX MTAooiiiiiiieeieie ettt sttt s 526
16.2.2 Getting the Mail to Your Computer with Fetchmailcc.ccoooeeiiininnie. 535
16.2.3 Other Email Administrative ISSUEScccccverieririiiieierieee e 536
16.2.4 USING KMl ..ottt 537
16.2.5 Using Mozilla Mail & NEWScccoiriiriiiiniiienieniieeeeeesteiese et 540
Chapter 17. Basic SECUTILY ...ccceveervirirrssnisniisnissnnssnicssecsnisssnsssnesnesssssssnssseessssssssssssessens 542
17.1 A Perspective on SYStemM SECUTILYeeevieevieriiereerieeriesreeieeseeeve e eseeesereeseeseees 542
17.2 Initial Steps in Setting Up a Secure SYStemcccueeevierieerieeciiereereeseeeveeseenenns 544
17.2.1 Shutting Down Unwanted Network Daemons..........ccccceceeverieneniineneenennene 544
17.2.2 Top 10 Things You Should Never Doc.cccceeeeeiiiiciieniieieciecreereecee s 545
17.3 TCP Wrapper Configurationcccceceveeerveeirieeerreesireesreeesreessereessseesssnessssneessnes 547
17.3.1 Using TCP Wrappers with inetdccccoeoieiiiiiiiieieeeeee e 548
17.3.2 Using TCP Wrappers with Xinetdccecceeiierieriiieiienieeeeeeeeeeeee e 548
17.3.3 /etc/hosts.allow and /etc/hosts.denyocceeeeerieriieiiesiee e 548
17.4 Firewalls: Filtering IP Packetscccevieiiieiieiieiieeee e 550
17.4.1 NEtFIIET BASICS ...ievieiiieeiieiieiieete ettt ettt ettt este e e seaeenae e 551
17.4.2 Developing IP Filtering RUIESELScccveviieiieciieiieeiieieeeeeee e 555
17.4.3 1P Filter Management and Script Files.......c.cocoveeviirviieiieniecieeieeeeeeeie e 556
17.4.4 Sample netfilter Configurationscccceeeveereereerieesiesieeee e eseeseeeseeieens 556
Chapter 18. LAMP.........ouuiiineniniirenisnessisncssnsssssessessssssssssesssesees 561
I8.1 MYSQL ..ottt ettt st ettt en bt st e b st et e et e naesnnen 563
I8.2 PHP....eee ettt sttt ettt sttt e bt e neenneeaeen 569
18.2.1 Some Sample PHPcoooiiiiiee et 569
18.2.2 PHP4 as an Apache Module..........ccooouieiiiiiiiieieeeeeeee e 572
18.3 The LAMP Server in ACHOMNc.cecierieeieeiieeieeteecieesee sttt see e eseeseaeeseenees 574

vii

Table of Contents

Appendix A. Sources of Linux Information.........eecceicseicssecnsnncssnecsssncssenccsnnenns 576
A.1 Linux Documentation PrOJECEcccviiviiiiiiieciiieiee et eree e 576
AL2 FTP SIEES ottt b ettt nae s 577
A3 World Wide Web Sites.....c.oeiiiiiiiiiiie ettt 577

A.3.1 General DocumMENtation.ceeueeeiieriieieeie ettt 577
A.3.2 Open SOUICE PTOJECLS ...ccuveeiieiieiiiecieeieesieeseeeie ettt ete et e seeessseeseensnens 578
A.3.3 Programming Languages and ToolIS.........cccecveriiriiieciienienieceeeee e 578
A.3.4 News and Information SIteScceererieriirierienienierieneeieeeeeie e 579
A.3.5 Linux Software Directories and Download Sitesccccevevvieneniienenienennnn. 579
A.3.6 LinuxX DiStrIDULIONS. ...cc.veriieiesiieiesiteiesiteieeesie ettt s 579
A.3.7 Commercial Linux Software COMPaniescccceveervreerireeerreenreeeseneeseneenens 580
A.3.8 Internet RFCs and Other Standards............coccooiieiiiiiiiiiii e 581
A.3.9 MISCEIIANEOUS ..ottt ettt ettt e e et e e e e eneas 581

Appendix B. Installing Linux on Digital/Compaq Alpha Systems 582

B.1 Alpha History and Statusccccieeieeoienieeie ettt 582
B.1.1 The Linux Port and DiStribUtionscceeeiverieriencieeiesie e 583
BL1.2 CRIPSELS ..eeviieiiieiieieeite ettt ettt et e sae st ebe et eseeeenbeesseesseessseenseessaesnseensens 584
B.1.3 Sources of Informationccceecieeciieeienieeieeeece e 584
B.1.4 Minimum HardWareccccieiiiiiiieiienie et 586
B.1.5 IDE/ATAPI DIIVE SUPPOTL...ccctiiiiiiiieiieiieeie et eee ettt seae e eneees 586
B.1.6 Mice and Serial POTtS.........ccceeoiiriiriiiinieneeiesieeienie e 586

B.2 Preparations and General Procedure for Installation............ceccevcerienenvenenienennns 586
B.2.1 Potential Incompatibilities and Hardware Problemsccccevvvvienierienennn. 587
B.2.2 Installation ChOICESc.eeruieruiiiiieiieieee ettt 588

B.3 INStAlliNG LINUX...cuviiriiorieitiiiiiecieeiee st cre et et e ereeieesaesveeveeseaesebeesbeesaaeseseenseeenas 591
B.3.1 General ProCedUurecoeiuieeiiiiieieeeie ettt 591
B.3.2 Preparing Software for Installation............coccoeiieniiiiieiiinieee e, 592
B.3.3 Preparing Hardware for Installationccoeoieiiiniieiienie e 592
B.3.4 Setting Up the System Firmware to Start the Installationc.cceceeveenen. 593
B.3.5 Loading the Linux Boot Kernel............cccoceeiiiiiiiiieieeceeeeee e 593

B.4 Tuning and Post-Installation Considerations.............ccecueveevererienieneeneneeneeeeeens 595
B.4.1 Kernel TUNINE......ccoviiiiiiieieeeieeie ettt ete e e e enre s e ssbeensaennees 595
B.4.2 Performance and Library TUNINGccccccvieeiierieiieiie e eee e 595
B.4.3 Binary EMUlation...........cccoevciiiiiiiiiiiieiec ettt esere et 595
B.4.4 Graphical Browser Considerationsccccueevievriereeeereeseesreereesreeseveeneesenas 595

L2 3T0) 1 T07 a1 1 1 RN 597
Linux Documentation Project GUIEscccieriieriiiiieiiieeeieeeee e 597
Linux Documentation Project FAQS........ooiiriiiiiiieeeeeeeeee e 598
Linux Documentation Project HOWTOs (Partial LiSting)ccceeeveeieervenierieeieenen. 598
General LinuxX BOOKSoooiiiiiiiieieeeeeeeeee ettt 599
Unix and Unix SHellScooiiiiiiiiiiiiiceccccceeeee et 599
APPIICALIONS ..e.eviieiieiiieieeieecte et eee st e ete et e st e e beeteesaaeseseesseessaessseesseessaesssessseenseesssennns 599
The INEIMET ..c..eviiiiiiiiee et 600
Networks and COMMUNICALIONSceureureuiiiiiiiiiieieieitee et 600
Programming and Linux INternals............cccoeeuiiviiiiiioieiieiie e e 601
System AdMINISTIAIONccvierieiiieiieteesteeeee et esteeseeebeebeeseaeeseesbeesseessseesseesssessseans 601
LT 11 51 2SR USUSRR 601

Colophon .603

viii

Preface

Preface

"Technical knowledge is not enough. One must transcend techniques so that the art becomes
an artless art, growing out of the unconscious."

—Daisetsu Suzuki (1870-1966)

This is a book about Linux, a free, open source operating system that's changing the world of
computing. In this book, we show how you can completely change the way you work with
computers by exploring a powerful and free operating system. Linux goes against
the traditional computing mainstream, being developed by a loosely organized group of
thousands of volunteers across the Internet. Linux started as a real underground movement —
guerrilla hacking, if you will — and brings a lot of excitement, discovery, and self-
empowerment back into today's corporate-dominated computing culture. We invite you to
dive in, enjoy yourself, and join the throng of people who know what it means to tweak your
dot clocks and rdev your kernel image.

The Zen quote at the beginning of this preface summarizes our philosophy in this book. We're
targeting readers who are inquisitive and creative enough to delve full-tilt into the world of
Linux, and who want to get at the heart of the system. Linux represents a rebellion against
commercial operating systems, and many of its users like living on the edge of the latest
technological trends. Of course, the casual reader can set up and run a Linux system (or
hundreds of them!) without much trouble, but the purpose of this book is to dig more deeply
into the system — to bring you completely into the Linux mentality, to reach Linux
"enlightenment." Rather than gloss over messy details, we explain the concepts by which the
system actually works so that you can troubleshoot problems on your own. By sharing the
accumulated expertise of several Linux experts, we hope to give you enough confidence to
call yourself a true Linux Guru. (Your first koan: what is the sound of one user hacking?)

You have in your hands the fourth edition of Running Linux, and by most accounts this book
is considered the classic text on installing, maintaining, and learning to use a Linux system.
The first edition was published way back in 1996, and had its roots in a free book called Linux
Installation and Getting Started, which is still floating around the Internet. Since then,
Running Linux has gone through many improvements and changes to keep the text up-to-date
with the latest developments in the Linux world. Kalle Dalheimer joined Matt Welsh and Lar
Kaufman for the third edition, and has done most of the updates for this edition as well. Terry
Dawson has contributed some material on security.

In this edition, we have completely updated the installation, configuration, and tutorial
information to be up-to-date with the latest Linux software distributions (including Red Hat
and its derivatives, SuSE, and Debian) and many application packages. The core of the book,
however, has not changed much. This was intentional: in the first three editions we made a
great effort to make the book as robust as possible, even though Linux itself is under constant
development. No book can adequately capture everything there is to know about Linux. (You
won't find chapters here on using Linux on the Space Shuttle, or on finding weaknesses in
data encryption algorithms, although it's been done!) Our approach has worked remarkably
well and has been preserved in this new, updated edition. We think this book will be of use to
you for a long time to come.

Preface

The world of Linux has changed a lot since the last edition of Running Linux. Apart from
increased performance and robustness, Linux sports an increasing range of applications, from
personal productivity tools to high-end databases. Linux is used to running mission-critical
services, and drives many popular Internet sites, search engines, and content delivery
networks. Linux is also being increasingly adopted on the desktop, and desktop systems such
as KDE and GNOME are making it easier than ever before to get the most out of Linux.

In the preface to the first edition, we said that "Linux has the potential to completely change
the face of the PC operating system world." Looking back, it's clear that our prediction was
right! Linux has erupted into the computing mainstream with an amazing force: it has been
covered by every major media channel, has helped usher in the so-called "Open Source
Revolution," and is widely claimed as the most viable competitor to Microsoft's dominance in
the operating systems market. Today, most estimates place the number of Linux users
worldwide at well over 200 million. Linux has matured to the point where many people can
dive in and start using Linux without knowing most of the hairy details behind device drivers,
XFree86 configuration files, and bootloaders. Still, we think it's best to give you some of the
behind-the-scenes views, so you have an understanding of the workings of the system, even if
it's not strictly necessary for casual Linux use.

Why People Like Linux

There are many reasons why people are finding that Linux is the right operating system for
them. It might have to do with cost, performance, flexibility, size, or features. Or it might
have something to do with that intangible thrill that you get from running your own system,
rather than simply installing a bunch of software that comes out of a box. Windows XP and
Mac OS X are good operating systems, but they are focused on the needs of home users. As
such, they have some limitations and are a lot less flexible than Linux. Here are a few reasons
why people are switching to Linux:

o It's free. That is, Linux is a freely redistributable clone of the Unix operating system.
You can get Linux free from someone who has it or from the World Wide Web, or
you can buy it at a reasonable cost on CD-ROM from a vendor who has packaged it
(probably with added value), possibly with support services. Linux is also "free as in
speech” (not just "free as in beer"): anyone can modify and distribute modifications
and improvements to the system. (We'll get into all of this later, when we talk about
open source and free software.)

e It's popular. It runs on a wide range of hardware platforms, including popular
Pentium (Pentium II, III, and 4), AMD, and Cyrix chips, and even older 386/486
machines. Linux also runs on higher-end systems based on the Itanium, SPARC, or
Alpha architectures, as well as on PowerPC and 68k-based Macs. Linux even runs on
IBM 390 mainframes, and stripped-down versions run on personal digital assistants
(PDAs) like the Palm Pilot and Compaq iPAQ. Linux supports a broad range of
hardware, including video cards, sound cards, CD-ROMs, disk drives, printers,
scanners, and many other devices.

Linux has an enormous user community presence on the World Wide Web, with many
web sites devoted to providing information and discussion about the system. A
growing number of commercial software vendors are developing applications for
Linux, including Corel WordPerfect Office 2000 Suite, the StarOffice suite from Sun

Preface

Microsystems, and a number of database products from big names such as Oracle,
Informix, and IBM.

It's powerful. Linux is efficient and fast, and makes excellent use of hardware. Many
users switching to Linux from Windows are surprised at how fast and responsive the
system is, even with many processes running and with multiple windows open. A
Linux machine with a reasonably fast processor and a sufficient amount of memory
can perform as well, or better, than Unix workstations costing tens of thousands of
dollars. Linux is a multiuser, multitasking operating system that can run many
applications (and even have many users logged into the same system) at once. Linux
also supports multiprocessor systems, and Linux is commonly used in high-end server
environments where this kind of hardware is the norm. Linux is used for building large
"clusters" consisting of hundreds of machines connected with a fast network, used for
massive scientific calculations or for driving large web sites.

It's under your control. Whereas most GUI-heavy proprietary systems embody a
policy of keeping the user as ignorant of system processes as possible, Linux is very
open and makes it easy for you to know what is happening under the hood. At the
same time, if you like, you can relinquish some control and rely on easy-to-use tools
like SuSE's yast.

It's robust. Linux is being developed in the open by thousands of programmers, as
well as numerous companies and universities, all contributing new features,
performance enhancements, and bug fixes. It incorporates the work of these many
developers in the form of advanced compilers, editors, and utilities. As a result, Linux
is extremely robust; many users have Linux systems that stay up for months at a time
(say goodbye to the "blue screen of death!"). Linux has an enormous base of freely
available applications, ranging from desktop publishing and office suites to scientific
tools to multimedia applications to games.

It's full-featured. Linux supports of the features of modern Unix-based operating
systems, including virtual memory, threads, multiprocessors, and advanced
networking (including IPv6, DHCP, firewalling, network address translation, and
more). Linux supports a vast array of software packages, programming languages, and
hardware devices. Linux uses the X Window System graphical user interface (GUI)
and supports several advanced desktop environments, including KDE and GNOME
(all covered later in this book).

It's highly compatible with Windows. Linux will happily coexist on the same
machine as any flavor of Windows (including Windows 95/98/NT, Windows 2000, or
Windows XP), or other operating systems such as OS X and FreeBSD. Linux can
directly access Windows files, either across the network, or on the Windows portions
of your hard drive on the same system. Using the popular Samba tool, Linux can also
act as a Windows file and print server. Note that Linux does not run under Windows;
it is completely independent of it, but features have been added to allow the separate
systems to work together.

It's small. The core operating system can run on just 8 MB of system memory,
including a desktop GUI and several applications. A basic Linux system can fit into 20
MB or so of disk storage, and many people run a basic Linux "rescue system" from a
single 1.44 MB floppy! Linux has even been tuned to run on low-memory embedded
systems (such as those used in network routers or robots), and in hand-held PDAs.

It's big. Some of the larger distributions can fill several gigabytes of disk space with
applications, source code, and datafiles. The number of powerful utilities and
applications ported to Linux grows constantly. Most Linux users can run a complete

Preface

system in 300 MB or so of disk space. This includes all the basics, as well as nice
extras such as programming libraries, compilers, text-processing tools, and more. But
if you're a real power user, much more is available.

o It's supported. The most important line of support is the many web sites devoted to
Linux, as well as the many newsgroups and mailing lists online. You can also contract
for support from an independent company or buy a supported version of Linux from
one of its distributors.

o It's well-documented. There is this book (a good start, we commend you on that!),
which is also available in Spanish, German, French, Italian, Portuguese, Czech, Polish,
Chinese, Taiwanese, and Japanese. The Linux development community established
the Linux Documentation Project (LDP) early on, which maintains a large amount of
online documentation about the system. The many books, FAQ lists, and "how-to"
documents from the LDP can guide you through almost any task that needs to be done
under Linux. Once you get over a few installation humps, Linux is more or less like
any other Unix system, so the many general books about Unix use and administration
will give you all the help you need. Finally, there is the popular press, which has
written hundreds of books on Linux — both introductory and advanced — which have
been translated into most major languages around the world.

o It's sexy. Let's face it: there's nothing particularly daring or edgy about running the
latest shrink-wrapped release from the world's largest software company (need we
name names?). Linux has an attitude, a philosophy, and a joie de vivre that you're not
going to find in any other operating system. There's much, much more to Linux than a
bunch of bits on a CD-ROM . . . can you dig it?

Organization of This Book

Each chapter of this book contains a big chunk of information. It takes you into a world of
material that could easily take up several books. But we move quickly through the topics you
need to know.

Chapter 1 tries to draw together many different threads. It explains why Linux came to be and
what makes it different from other versions of Unix as well as other operating systems for
personal computers.

Chapter 2 describes preliminary tasks that you may have to do before installation, such as
partitioning your disk (in case you want to run another operating system as well as Linux).

Chapter 3 is a comprehensive tutorial on installing and configuring Linux on your system.

Chapter 4 offers a system administrator's introduction to Unix, for people who need one. It is
intended to give you enough tools to perform the basic tasks you'll need to do throughout the
book. Basic commands are covered, along with some tips for administrators and some
concepts you should know.

Chapter 5, Chapter 6, Chapter 7, and Chapter 8 cover system administration and maintenance.
These are perhaps the most important and useful chapters of the book; they cover user account
management, backups, software upgrading, building a new kernel, audio configuration, and
more.

Preface

Chapter 9 introduces you to the most popular and commonly used text tools and editors on
Linux — vi and Emacs — and shows you how to print a document and how to use various
graphics programs.

Chapter 10 shows you how to install and configure the X Window System, a powerful GUI
for Linux and Unix systems. We show you how to overcome problems you might encounter
when your distribution installs the software and how to configure it for the best performance
on your video hardware.

Chapter 11 shows you how to set up your own visual environment under the X Window
System, covering a wide range of the powerful customizations the system makes available,
the KDE and GNOME desktops, and a few useful programs that run under X.

Chapter 12 presents various tools for interfacing with DOS and Windows systems,
particularly the Samba server that integrates Linux with other users running PCs.

Chapter 13 and Chapter 14 are for programmers. Compilers, interpreters, debuggers, and
many other tools for programming under Linux are presented.

Chapter 15 tells you how to set up your all-important connection to the outside world. It
shows you how to configure your system so that it can work on a local area network or
communicate with an Internet service provider using Point-to-Point Protocol (PPP).

Chapter 16 goes beyond basic network configuration and shows you how to configure
electronic mail, set up the EIm and Netscape mail readers, and even run your own World
Wide Web server.

Chapter 17 offers the most basic, critical rules for securing an Internet-connected system. It
will not guarantee by any means that you are safe from break-ins, but it will help you
eliminate the obvious and trivial weaknesses in your system.

Chapter 18 introduces the most popular set of tools that web site administrators use to serve
up content. This collection is called LAMP, which stands for Linux, Apache, MySQL, and
PHP.

Appendix A tells you about other useful documentation for Linux and other sources of help.

Appendix B shows you how to install Linux on the first non-Intel system that supported it, the
64-bit Digital Alpha machine.

The Bibliography lists a number of books, HOWTOs, and Internet RFCs of interest to Linux
users and administrators.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Preface

[talic

Is used for file and directory names, program and command names, command-line
options, email addresses and path names, site names, and all new terms.

Constant Width

Is used in examples to show the contents of files or the output from commands, to
indicate environment variables and keywords that appear in code, and for machine
names, hostnames, usernames, IDs, and Emacs commands.

Constant Width Bold

Is used in examples to show commands or other text that should be typed literally by
the user.

Constant Width Italic

Is used to indicate variable options, keywords, or text that the user is to replace with
an actual value.

— This icon designates a note, which is an important aside to the nearby
o text.
L I

o

_“ This icon designates a warning relating to the nearby text.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us
know about any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

You can send us messages electronically. To be put on the mailing list or to request a catalog,
send email to:

info@oreilly.com

Preface

To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/runux4/
For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments

This book is the result of many people's efforts, and as expected, it would be impossible to list
them all here. First of all, we would like to thank Andy Oram, who did an excellent job of
editing, writing, and whip-cracking to get this book into shape. Apart from being the overall
editor, Andy contributed the Unix tutorial chapter as well as material for the X and Perl
sections. It was Andy who approached us about writing for O'Reilly in the first place, and he
has demonstrated the patience of a saint when waiting for our updates to trickle in.

Those of you who are already familiar with Linux may notice that some portions of this book,
such as the introductory and installation chapters, have been released as part of Linux
Installation and Getting Started, a free book available via the Internet. O'Reilly allowed us to
release those portions (originally written for this book) to the [&GS, so they could benefit the
Internet-based Linux community and we would get feedback and corrections from its
readership. Thanks to everyone who contributed edits to those sections.

We would also like to thank the following people for their work on the Linux operating
system — without all of them, there wouldn't be anything to write a book about: Linus
Torvalds, Richard Stallman, Donald Becker, Alan Cox, Remy Card, Eric Raymond, Ted T'so,
H.J. Lu, Miguel de Icaza, Ross Biro, Drew Eckhardt, Ed Carp, Eric Youngdale, Fred van
Kempen, Steven Tweedie, Patrick Volkerding, Dirk Hohndel, Matthias Ettrichand, and all of
the other hackers, from the kernel grunts to the lowly docos, too numerous to mention here.

Special thanks to the following people for their contributions to the Linux Documentation
Project, technical review of this book, or general friendliness and support: Phil Hughes,
Melinda McBride, Bill Hahn, Dan Irving, Michael Johnston, Joel Goldberger, Michael K.
Johnson, Adam Richter, Roman Yanovsky, Jon Magid, Erik Troan, Lars Wirzenius, Olaf
Kirch, Greg Hankins, Alan Sondheim, Jon David, Anna Clark, Adam Goodman, Lee Gomes,
Rob Walker, Rob Malda, Jeff Bates, and Volker Lendecke. We are grateful to Shawn Wallace
and Umberto Crenca for the gorgeous shot in Chapter 9 of The Gimp in use (Figure 9-5).

For the third edition, we thank Phil Hughes, Robert J. Chassell, Tony Cappellini, Craig Small,
Nat Makarevitch, Chris Davis, Chuck Toporek, Frederic HongFeng, and David Pranata for
wide-ranging comments and corrections. Particularly impressive were the efforts put in by an
entire team of Debian developers and users, organized for us by Ossama Othman and Julian
T. J. Midgley. Julian set up a CVS repository for comments and the book was examined
collectively by him, Chris Lawrence, Robert J. Chassell, Kirk Hilliard, and Stephen Zander.

Preface

For the fourth edition, we thank David Collier-Brown, Oliver Flimm, Phil Hughes, Chris
Lawrence, Rich Payne, Craig Small, Jeff Tranter, and Aaron Weber for their reviews. Matt
Welsh would especially like to thank his fiancée, Amy Bauer, for her love and support, as
well as for paying for half of the DSL line at home.

Kalle would like to thank Valerica Vatafu from Buzau, Romania, for lots of help with the
chapter about LAMP. He would also like to thank his colleagues in his company
Klarilvdalens Datakonsult AB — Michael Boyer de la Giroday, Tanja Dalheimer, Steffen
Hansen, Jesper Pedersen, Lutz Rogowski, Bo Thorsen, and Karl-Heinz Zimmer — for their
constructive comments on drafts of the book as well as for being general "Linux thought
amplifiers."

This edition benefited from the contributions of experts in various subject areas. In particular,
we'd like to thank Jeff Tranter, for the audio configuration information in Chapter 9 and for
updating online sources of Linux information in Appendix A and in the Bibliography; Aaron
Weber of Ximian, for the material on the GNOME desktop in Chapter 11; Kyle Dent, for the
material on the Postfix mail transfer agent in Chapter 16; Jay Ts, for rewriting the section on
Samba in Chapter 12; Chris Lawrence, for the material on upgrading packages on Debian in
Chapter 7; and Barrett G. Lyon and Richard Payne, for the material on installing Linux on
Compag/Digital Alpha systems in Appendix B (updated by Richard Payne for the fourth
edition).

If you have questions, comments, or corrections for this book, please feel free to get in touch
with the authors. Matt Welsh can be reached on the Internet at mdw(@cs.berkeley.edu. Lar
Kaufman can be reached at lark@conserve.org. Kalle Dalheimer can be reached at
kalle@dalheimer.de.

Chapter 1. Introduction to Linux

Chapter 1. Introduction to Linux

This is a book about Linux, a free, open source operating system that supports full
multitasking, the X Window System, TCP/IP networking, and much more. Hang tight and
read on: in the pages that follow, we describe the system in meticulous detail.

Linux has generated more excitement in the computer field than any other development of the
past several years. It has spread surprisingly fast, and the loyalty it inspires recalls the
excitement of do-it-yourself computing that used to characterize earlier advances in computer
technology. Ironically, it succeeds by rejuvenating one of the oldest operating systems still in
widespread use: Unix. Linux is both a new technology and an old one.

In narrow technical terms, Linux is just the operating system kernel, offering the basic
services of process scheduling, virtual memory, file management, and device I/O. In other
words, Linux itself is the lowest-level part of the operating system.

However, most people use the term "Linux" to refer to the complete system — the kernel
along with the many applications that it runs: a complete development and work environment
including compilers, editors, graphical interfaces, text processors, games, and more.

This book will be your guide to Linux's shifting and many-faceted world. Linux has
developed into an operating system for businesses, education, and personal productivity, and
this book will help you get the most out of it.

Linux can transform any personal computer into a high-end workstation and server.
Corporations are installing Linux on entire networks of machines, using the operating system
to manage financial and hospital records, distributed-user computing environments,
telecommunications, and more. Universities worldwide are using Linux for teaching courses
on operating system programming and design. And, of course, computing enthusiasts
everywhere are using Linux at home, for programming, document production, and all-around
hacking. People use Linux on high-end desktop machines, handheld PDAs, mobile laptops,
and even old clunkers sitting in the closet doing nothing more than spooling print jobs.

Apart from workstation and personal use, Linux is also being used to drive big servers.
Increasingly, people are discovering that Linux is powerful, stable, and flexible enough to run
the largest disk arrays and multiprocessor systems — with applications ranging from World
Wide Web servers to corporate databases. Linux drives many mission-critical business
applications, Internet sites, search engines, and content delivery networks. Scientists are
connecting arrays of Linux machines into enormous '"clusters" to solve the most
computationally intensive problems in physics and engineering. With the Samba software
suite, Linux can even act as a Windows file and print server — with better performance than
Windows!

What makes Linux so different is that it's a free implementation of Unix. It was and still is
developed by a group of volunteers, primarily on the Internet, who exchange code, report
bugs, and fix problems in an open environment. Anyone is welcome to join in the Linux
development effort: all it takes is interest in hacking a free Unix clone and some kind of
programming know-how.

Chapter 1. Introduction to Linux

In this book, we assume you're comfortable with a personal computer (running any operating
system, such as Windows 98, or some other version of Unix). We also assume that you're
willing to do some experimentation to get everything working correctly — after all, this is
half of the fun of getting into Linux. Linux has evolved into a system that is amazingly easy to
install and configure, but because it is so powerful, some details are more complex than you'll
find in the Windows world. With this book as your guide, we hope you'll find that setting up
and running your own Linux system is quite easy and a great deal of fun.

1.1 About This Book

This book is an overview and entry-level guide to the Linux system. We attempt to present
enough general and interesting information on a number of topics to satisfy Unix novices and
wizards alike. This book should provide sufficient material for almost anyone to install and
use Linux and get the most out of it. Instead of covering many of the volatile technical details
— those things that tend to change with rapid development — we give you enough
background to find out more on your own.

This book is geared for those people who really want to exploit the power that Linux
provides. Rather than gloss over all the tricky details, we give you enough background to truly
understand how the various parts of the system work, so you can customize, configure, and
troubleshoot the system on your own. Linux is not difficult to install and use. However, as
with any implementation of Unix, there is often some black magic involved to get everything
working correctly.

In this book, we cover the following topics:

e What is Linux? The design and philosophy of this unique operating system, and what
it can do for you.

o Information on what you need to run Linux, including suggestions on what kind of
hardware configuration is recommended for a complete system.

e How to obtain and install Linux. We cover the Red Hat, SuSE, and Debian
distributions in more detail than others, but the background here should be adequate to
cover any release of the system.

e For new users, an introduction to the Unix system, including an overview of the most
important commands and concepts.

e The care and feeding of the Linux system, including system administration and
maintenance, upgrading the system, and how to fix things when they don't work.

o Getting the most out of your Linux system, with "power tools" such as TgX, Emacs,
KDE, GNOME, and more.

e The Linux programming environment. The tools of the trade for programming and
developing software on the Linux system. We introduce compilation and debugging of
C and C++ programs, Java, Perl, and shell scripts.

e Using Linux for telecommunications and networking, including the basics of TCP/IP
configuration, PPP for Internet connectivity over a modem, ISDN configuration,
email, news, and web access — we even show how to configure your Linux system as
a web server.

There are a million things we'd love to show you how to do with Linux. Unfortunately, in

order to cover them all, this book would be the size of the unabridged Oxford English
Dictionary and would be impossible for anyone (let alone the poor authors) to maintain.

10

Chapter 1. Introduction to Linux

Instead we've tried to include the most salient and interesting aspects of the system and show
you how to find out more.

While much of the discussion in this book is not overly technical, it helps to have previous
experience with another Unix system. For those who don't have Unix experience, we have
included a short tutorial in Chapter 4, for new users. Chapter 5 is a complete chapter on
systems administration that should help even seasoned Unix users run a Linux system.

If you are new to Unix, you'll want to pick up a more complete guide to Unix basics. We don't
dwell for long on the fundamentals, instead preferring to skip to the fun parts of the system.
At any rate, while this book should be enough to get you running, more information on using
Unix and its many tools will be essential for most readers. See Appendix A, for a list of
sources of information.

1.2 A Brief History of Linux

Unix is one of the most popular operating systems worldwide because of its large support
base and distribution. It was originally developed as a multitasking system for minicomputers
and mainframes in the mid-1970s. It has since grown to become one of the most widely used
operating systems anywhere, despite its sometimes confusing interface and lack of central
standardization. There is no single implementation of Unix. Originally developed by Bell
Labs, Unix eventually forked into several versions, including a popular distribution from the
University of California at Berkeley, called BSD. Over the years, many vendors have
developed their own implementations of Unix, either from scratch or starting with another
version. Linux was built from the ground up, although earlier versions included some code
from BSD as well.

While Unix underwent a dip in market strength during the early 1990s, under the onslaught of
the new Windows NT system, it came back strong and has become the mainstay of large
computers.

Unix has quite a cult following in the operating systems community. Many hackers feel that
Unix is the Right Thing — the One True Operating System. Hence, the development of Linux
by an expanding group of Unix hackers who want to get their hands dirty with their own
system. Moreover, Linux is not a "product”" that ties you to a particular vendor or software
developer. Because Linux is free, and all the source code is available (more on that later),
anyone can modify the system to fit their own needs. Rather than waiting for some large
company to release the latest features and service packs, the Linux user community is
empowered to improve, adapt, and fix the system themselves. It's this empowerment that has
helped Linux become so powerful.

Linux is a freely distributable version of Unix, originally developed by Linus Torvalds, who
began work on Linux in 1991 as a student at the University of Helsinki in Finland. Linus now
works for Transmeta Corporation, a company in Santa Clara, California, and continues to
maintain the Linux kernel, that is, the lowest-level core component of the operating system.

Linus released the initial version of Linux for free on the Internet, inadvertently spawning one
of the largest software development phenomena of all time. Today, Linux is authored and
maintained by thousands of developers loosely collaborating across the Internet. Companies
have sprung up to provide Linux support, to package it into easy-to-install distributions, and

11

Chapter 1. Introduction to Linux

to sell workstations preinstalled with the Linux software. In March 1999, the first Linux
World Expo trade show was held in San Jose, California, with reportedly well over 12,000
people in attendance. These days, most estimates place the number of Linux users in the
millions.

Inspired by Andrew Tanenbaum's Minix operating system (one of the original Unix systems
for PCs, intended for teaching operating system design), Linux began as a class project in
which Linus wanted to build a simple Unix system that could run on a '386-based PC. The
first discussions about Linux were on the Usenet newsgroup, comp.os.minix. These
discussions were concerned mostly with the development of a small, academic Unix system
for Minix users who wanted more.

The very early development of Linux dealt mostly with the task-switching features of the
80386 protected-mode interface, all written in assembly code. Linus writes:

After that it was plain sailing: hairy coding still, but I had some devices, and
debugging was easier. [started using C at this stage, and it certainly speeds up
development. This is also when I start to get serious about my megalomaniac
ideas to make "a better Minix than Minix." I was hoping I'd be able to
recompile gcc under Linux some day ...

Two months for basic setup, but then only slightly longer until I had a disk
driver (seriously buggy, but it happened to work on my machine) and a small
filesystem. That was about when I made 0.01 available [around late August of
1991]: it wasn't pretty, it had no floppy driver, and it couldn't do much
anything. I don't think anybody ever compiled that version. But by then I was
hooked, and didn't want to stop until I could chuck out Minix.

No announcement was ever made for Linux Version 0.01. The 0.01 release wasn't even
executable: it contained only the bare rudiments of the kernel source and assumed that you
had access to a Minix machine to compile and play with them.

On October 5, 1991, Linus announced the first "official" version of Linux, Version 0.02. At
this point, Linus was able to run bash (the GNU Bourne Again Shell) and gcc (the GNU C
compiler), but not much else was working. Again, this was intended as a hacker's system. The
primary focus was kernel development; none of the issues of user support, documentation,
distribution, and so on had even been addressed. Today, the situation is quite different — the
real excitement in the Linux world deals with graphical user environments, easy-to-install
distribution packages, and high-level applications such as graphics utilities and productivity
suites.

Linus wrote in comp.os.minix :

Do you pine for the nice days of Minix-1.1, when men were men and wrote
their own device drivers? Are you without a nice project and just dying to cut
your teeth on an OS you can try to modify for your needs? Are you finding it
frustrating when everything works on Minix? No more all-nighters to get a
nifty program working? Then this post might be just for you.

12

Chapter 1. Introduction to Linux

As I mentioned a month ago, I'm working on a free version of a Minix-
lookalike for AT-386 computers. It has finally reached the stage where it's
even usable (though may not be depending on what you want), and I am
willing to put out the sources for wider distribution. It's just version 0.02 ... but
I've successfully run bash, gcc, GNU make, GNU sed, compress, etc. under it.

After Version 0.03, Linus bumped the version number up to 0.10, as more people started to
work on the system. After several further revisions, Linus increased the version number to
0.95, to reflect his expectation that the system was ready for an "official" release very soon.
(Generally, software is not assigned the version number 1.0 until it's theoretically complete or
bug-free.) This was in March 1992. It wasn't until two years later, in March 1994, that
Version 1.0 finally appeared. As of the time of this writing (September 2002), the current
kernel version is 2.4.19, while the 2.5 kernel versions are being concurrently developed.
(We'll explain the Linux versioning conventions in detail later.)

Linux could not have come into being without the GNU tools created by the Free Software
Foundation. The Free Software Foundation is a group formed in 1984 by Richard Stallman to
promote the development of software that can be developed, redistributed, and modified by
anyone — here, "free" refers to freedom, not just cost. Underlying the Free Software
Foundation's philosophy is a deep-rooted moral conviction that all software should be free
(again, in the sense of freedom); this philosophy is shared by many in the Linux community.
This ideal is embodied in the GNU General Public License (or GPL), the copyright license
under which Linux is released. We'll discuss this in more detail later in the chapter.

The GNU Project, which is the main result of the Free Software Foundation's efforts, has
produced many invaluable tools and applications that Linux has depended upon, including the
Emacs text editor, gcc compiler suite, and many others. GNU tools have been intertwined
with the development of Linux from the beginning. Because of the critical contributions of the
GNU Project, the Free Software Foundation even requests that distributions of Linux with
accompanying utilities be called GNU/Linux.

Berkeley Unix (BSD) has also played an important role in Linux — not so much in its
creation, but in providing the tools that make it popular. The so-called Berkeley Software
Distribution was developed at the University of California, Berkeley in the late 1970s by a
group of developers working from the original AT&T Unix sources. The BSD group made a
number of enhancements to the core Unix design, and soon, BSD took on a life of its own.
These days, many variants of the BSD system are available for a range of hardware platforms,
and the BSD community rivals that of Linux in terms of popularity. The Mac OS X operating
system is even based on a variant of BSD! Some of the networking utilities and daemons used
by Linux are derived from original BSD sources.

Today, Linux is a full-featured, complete implementation of Unix, with a vast array of
applications, programming languages, tools, and hardware support. Linux supports the X
Window System GUI, TCP/IP networking, multiprocessor machines, advanced hardware and
software for scientific and parallel computing, and much more. Nearly every major free
software package has been ported to Linux, and a great deal of commercial software is
available. In fact, many developers start by writing applications for Linux, and port them to
other Unix systems later. More hardware is supported than in original versions of the kernel.
Many people have executed benchmarks on Linux systems and found them to be faster than
expensive workstations, and Linux performs better than or as well as Windows NT/2000/XP

13

Chapter 1. Introduction to Linux

on a wide range of benchmarks. Who would have ever guessed that this "little" Unix clone
would have grown up to take on the entire world of personal and server computing?

1.3 Who's Using Linux?

Application developers, system administrators, network providers, kernel hackers, students,
and multimedia authors are just a few of the categories of people who find that Linux has a
particular charm.

Unix programmers are increasingly using Linux because of its cost — they can pick up a
complete programming environment for a few dollars and run it on cheap PC hardware — and
because Linux offers a great basis for portable programs. It's a modern operating system that
is POSIX-compliant and looks a lot like System V, so code that works on Linux should work
on other contemporary Unix systems.

Networking is one of Linux's strengths. It has been adopted with gusto by people who run
large networks, due to its simplicity of management, performance, and low cost. Many
Internet sites are making use of Linux to drive large web servers, e-commerce applications,
search engines, and more. Linux supports common networking standards, such as Network
File System (NFS) and Network Information Service (NIS), making it easy to merge a Linux
machine into a corporate or academic network with other Unix machines. It's easy to share
files, support remote logins, and run applications on other systems. Linux also supports the
Samba software suite, which allows a Linux machine to act as a Windows file and print
server. Many people are discovering that the combination of Linux and Samba for this
purpose is faster (and cheaper) than running Windows 2000.

One of the most popular uses of Linux is in driving large enterprise applications, including
web servers, databases, business-to-business systems, and e-commerce sites. A large number
of businesses are discovering that Linux is an inexpensive, efficient, and robust system
capable of driving the most mission-critical applications. The fact that Linux can be readily
customized — even down to the guts of the kernel — makes the system very attractive for
companies that need to exercise control over the inner workings of the system. Linux supports
RAID, a mechanism which allows an array of disks to be treated as a single logical storage
device, greatly increasing reliability. The combination of Linux, the Apache web server, the
MySQL database engine, and the PHP scripting language is so common that it has its own
acronym — LAMP. We'll cover LAMP in more detail in Chapter 18.

Kernel hackers were the first to come to Linux — in fact, the developers who helped Linus
Torvalds create Linux are still a formidable community. The Linux kernel mailing lists see a
great deal of activity, and it's the place to be if you want to stay on the bleeding edge of
operating system design. If you're into tuning page replacement algorithms, twiddling
network protocols, or optimizing buffer caches, Linux is a great choice. Linux is also good for
learning about the internals of operating system design, and many universities are making use
of Linux systems in advanced operating system courses.

Finally, Linux is becoming an exciting forum for multimedia. This is because it's compatible
with an enormous variety of hardware, including the majority of modern sound and video
cards. Several programming environments, including the MESA 3D toolkit (a free OpenGL
implementation), have been ported to Linux. The GIMP (a free Adobe Photoshop work-alike)
was originally developed under Linux, and is becoming the graphics manipulation and design

14

Chapter 1. Introduction to Linux

tool of choice for many artists. Many movie production companies regularly use Linux as the
workhorse for advanced special-effects rendering — the popular movies Titanic and The
Matrix used "render farms" of Linux machines to do much of the heavy lifting.

Linux also has some real-world applications. Linux systems have traveled the high seas of the
North Pacific, managing telecommunications and data analysis for an oceanographic research
vessel. Linux systems are being used at research stations in Antarctica, and large "clusters" of
Linux machines are used at many research facilities for complex scientific simulations
ranging from star formation to earthquakes. On a more basic level, several hospitals are using
Linux to maintain patient records. One of the reviewers of this book uses Linux in the U.S.
Marine Corps. Linux is proving to be as reliable and useful as other implementations of Unix.

So Linux is spreading out in many directions. Even naive end users can enjoy it if they get the
support universities and corporations typically provide their computer users. Configuration
and maintenance require some dedication. But Linux proves to be cost-effective, powerful,
and empowering for people who like having that extra control over their environments.

1.4 System Features

Linux supports most of the features found in other implementations of Unix, plus quite a few
not found elsewhere. This section provides a nickel tour of the Linux kernel features.

1.4.1 A Note on Linux Version Numbers

One potentially confusing aspect of Linux for newcomers is the way in which different pieces
of software are assigned a version number. When you first approach Linux, chances are you'll
be looking at a CD-ROM distribution, such as "Red Hat Version 7.1" or "SuSE Linux Version
6.0." It's important to understand that these version numbers only relate to the particular
distribution (which is a prepackaged version of Linux along with tons of free application
packages, usually sold on CD-ROM). Therefore, the version number assigned by Red Hat,
SuSE, or Debian might not have anything to do with the individual version numbers of the
software in that distribution.

The Linux kernel, as well as each application, component, library, or software package in a
Linux distribution, generally has its own version number. For example, you might be using
gcce Version 2.96, as well as the XFree86 GUI Version 4.0.3. As you can guess, the higher the
version number, the newer the software is. If you install Linux in the form of a distribution
(such as Red Hat and SuSE), all of this is simplified for you since the latest versions of each
package are usually included in the distribution, and the distribution vendors make sure that
the software on a particular distribution works together.

The Linux kernel has a peculiar version numbering scheme with which you should be
familiar. As mentioned before, the kernel is the core operating system itself, responsible for
managing all the hardware resources in your machine — such as disks, network interfaces,
memory, and so on. Unlike Windows systems, the Linux kernel doesn't include any
application-level libraries or GUIs. In some sense, as a user you will never interact with the
kernel directly, but rather through interfaces, such as the shell or the GUI (more on this later).

However, many people still consider the Linux kernel version to be the version of the "entire
system," which is somewhat misleading. Someone might say, "I'm running kernel

15

Chapter 1. Introduction to Linux

Version 2.5.12," but this doesn't mean much if everything else on the system is years out of
date.

The Linux kernel versioning system works as follows. At any given time, there are fwo
"latest" versions of the kernel out there (meaning available for download from the Internet) —
the "stable" and "development" releases. The stable release is meant for most Linux users
who aren't interested in hacking on bleeding-edge experimental features, but who need a
stable, working system that isn't changing underneath them from day to day. The development
release, on the other hand, changes very rapidly as new features are added and tested by
developers across the Internet. Changes to the stable release consist mostly of bug fixes and
security patches, while changes to the development release can be anything from major new
kernel subsystems to minor tweaks in a device driver for added performance. The Linux
developers don't guarantee that the development kernel version will work for everyone, but
they do maintain the stable version with the intention of making it run well everywhere.

The stable kernel release has an even minor version number (such as 2.4), while the
development release has an odd minor version number (such as 2.5). Note that the current
development kernel always has a minor version number exactly one greater than the current
stable kernel. So, when the current stable kernel is 2.6, the current development kernel will be
2.7. (Unless, of course, Linus decides to bump the kernel version to 3.0 — in which case the
development version will be 3.1, naturally).

Each kernel version has a third "patch-level" version number associated with it, such as 2.4.19
or 2.5.12. The patch level specifies the particular revision of that kernel version, with higher
numbers specifying newer revisions. As of the time of this writing in November 2002, the
latest stable kernel is 2.4.19 and the current development kernel is 2.5.45.

1.4.2 A Bag of Features

Linux is a complete multitasking, multiuser operating system (as are all other versions of
Unix). This means that many users can be logged onto the same machine at once, running
multiple programs simultaneously. Linux also supports multiprocessor systems (such as dual-
Pentium motherboards), with support for up to 32 processors in a system, which is great for
high-performance servers and scientific applications.

The Linux system is mostly compatible with a number of Unix standards (inasmuch as Unix
has standards) on the source level, including IEEE POSIX.1, System V, and BSD features.
Linux was developed with source portability in mind: therefore, you will probably find
features in the Linux system that are shared across multiple Unix implementations. A great
deal of free Unix software available on the Internet and elsewhere compiles on Linux out of
the box.

If you have some Unix background, you may be interested in some other specific internal
features of Linux, including POSIX job control (used by shells such as the C shell, csh, and
bash), pseudoterminals (pzy devices), and support for national or customized keyboards using
dynamically loadable keyboard drivers. Linux also supports virtual consoles, which allow you
to switch between multiple login sessions from the system console in text mode. Users of the
screen program will find the Linux virtual console implementation familiar (although nearly
all users make use of a GUI desktop instead).

16

Chapter 1. Introduction to Linux

Linux can quite happily coexist on a system that has other operating systems installed, such as
Windows 95/98, Windows NT/2000/XP, Mac OS, or other versions of Unix. The Linux
bootloader (LILO) and the GRand Unified Bootloader (GRUB) allow you to select which
operating system to start at boot time, and Linux is compatible with other bootloaders as well
(such as the one found in Windows 2000).

Linux can run on a wide range of CPU architectures, including the Intel x86 (the whole
Pentium line including the '386/'486), Itanium, SPARC/UltraSPARC, ARM, PA-RISC,
Alpha, PowerPC, MIPS, m68k, and IBM 370/390 mainframes. Linux has also been ported to
a number of embedded processors, and stripped-down versions have been built for various
PDAs, including the PalmPilot and Compaq iPaq. In the other direction, Linux is being
considered for top-of-the-line computers as well. In April 2002, Hewlett-Packard announced
that it was going to release a supercomputer with Linux as the operating system. A large
number of scalable clusters — supercomputers built out of arrays of PCs — run Linux as
well.

Linux supports various filesystem types for storing data. Some filesystems, such as the
Second Extended Filesystem (ext2fs), have been developed specifically for Linux. Other Unix
filesystem types, such as the Minix-1 and Xenix filesystems, are also supported. The
Windows NTFS (Windows 2000 and NT), VFAT (Windows 95/98), and FAT (MS-DOS)
filesystems have been implemented as well, allowing you to access Windows files directly.
Support is included for Macintosh, OS/2, and Amiga filesystems as well. The ISO 9660 CD-
ROM filesystem type, which reads all standard formats of CD-ROMs, is also supported. We'll
talk more about filesystems in Chapter 3 and Chapter 5.

Networking support is one of the greatest strengths of Linux, both in terms of functionality
and performance. Linux provides a complete implementation of TCP/IP networking. This
includes device drivers for many popular Ethernet cards, PPP and SLIP (allowing you to
access a TCP/IP network via a serial connection or modem), Parallel Line Internet Protocol
(PLIP), and the NFS. Linux also supports the modern IPv6 protocol suite, and many other
protocols including DHCP, Appletalk, IRDA, DECnet, and even AX.25 for packet radio
networks. The complete range of TCP/IP clients and services is supported, such as FTP,
Telnet, NNTP, and Simple Mail Transfer Protocol (SMTP). The Linux kernel includes
complete network firewall support, allowing you to configure any Linux machine as a firewall
(which screens network packets, preventing unauthorized access to an intranet, for example).
It is widely held that networking performance under Linux is superior to other operating
systems. We'll talk more about networking in Chapter 15.

1.4.3 Kernel

The kernel is the guts of the operating system itself; it's the code that controls the interface
between user programs and hardware devices, the scheduling of processes to achieve
multitasking, and many other aspects of the system. The kernel is not a separate process
running on the system. Instead, you can think of the kernel as a set of routines, constantly in
memory, to which every process has access. Kernel routines can be called in a number of
ways. One direct method to utilize the kernel is for a process to execute a system call, which
is a function that causes the kernel to execute some code on behalf of the process. For
example, the read system call will read data from a file descriptor. To the programmer, this
looks like any other C function, but in actuality the code for read is contained within the
kernel.

17

Chapter 1. Introduction to Linux

Kernel code is also executed in other situations. For example, when a hardware device issues
an interrupt, the interrupt handler is found within the kernel. When a process takes an action
that requires it to wait for results, the kernel steps in and puts the process to sleep, scheduling
another process in its place. Similarly, the kernel switches control between processes rapidly,
using the clock interrupt (and other means) to trigger a switch from one process to another.
This is basically how multitasking is accomplished.

The Linux kernel is known as a monolithic kernel, in that all core functions and device drivers
are part of the kernel proper. Some operating systems employ a microkernel architecture
whereby device drivers and other components (such as filesystems and memory management
code) are not part of the kernel — rather, they are treated as independent services or regular
user applications. There are advantages and disadvantages to both designs: the monolithic
architecture is more common among Unix implementations and is the design employed by
classic kernel designs, such as System V and BSD. Linux does support loadable device
drivers (which can be loaded and unloaded from memory through user commands); this is the
subject of Section 7.5 in Chapter 7.

The Linux kernel on Intel platforms is developed to use the special protected-mode features of
the Intel x86 processors (starting with the 80386 and moving on up to the current Pentium 4).
In particular, Linux makes use of the protected-mode descriptor-based memory management
paradigm and many of the other advanced features of these processors. Anyone familiar with
x86 protected-mode programming knows that this chip was designed for a multitasking
system such as Unix (the x86 was actually inspired by Multics). Linux exploits this
functionality.

Like most modern operating systems, Linux is a multiprocessor operating system: it supports
systems with more than one CPU on the motherboard. This feature allows different programs
to run on different CPUs at the same time (or "in parallel"). Linux also supports threads, a
common programming technique that allows a single program to create multiple "threads of
control" that share data in memory. Linux supports several kernel-level and user-level thread
packages, and Linux's kernel threads run on multiple CPUs, taking advantage of true
hardware parallelism. The Linux kernel threads package is compliant with the POSIX 1003.1c
standard.

The Linux kernel supports demand-paged loaded executables. That is, only those segments of
a program that are actually used are read into memory from disk. Also, if multiple instances
of a program are running at once, only one copy of the program code will be in memory.
Executables use dynamically linked shared libraries, meaning that executables share common
library code in a single library file found on disk. This allows executable files to occupy much
less space on disk. This also means that a single copy of the library code is held in memory at
one time, thus reducing overall memory usage. There are also statically linked libraries for
those who wish to maintain "complete" executables without the need for shared libraries to be
in place. Because Linux shared libraries are dynamically linked at runtime, programmers can
replace modules of the libraries with their own routines.

In order to make the best use of the system's memory, Linux implements so-called virtual
memory with disk paging. That is, a certain amount of swap space' can be allocated on disk.

' If you are a real OS geek, you will note that swap space is inappropriately named: entire processes are not
swapped, but rather individual pages of memory are paged out. While in some cases entire processes will be

18

Chapter 1. Introduction to Linux

When applications require more physical memory than is actually installed in the machine, it
will swap inactive pages of memory out to disk. (A page is simply the unit of memory
allocation used by the operating system; on most architectures, it's equivalent to 4 KB.) When
those pages are accessed again, they will be read from disk back into main memory. This
feature allows the system to run larger applications and support more users at once. Of course,
swap is no substitute for physical RAM; it's much slower to read pages from disk than from
memory.

The Linux kernel keeps portions of recently accessed files in memory, to avoid accessing the
(relatively slow) disk any more than necessary. The kernel uses all the free memory in the
system for caching disk accesses, so when the system is lightly loaded a large number of files
can be accessed rapidly from memory. When user applications require a greater amount of
physical memory, the size of the disk cache is reduced. In this way physical memory is never
left unused.

To facilitate debugging, the Linux kernel generates a core dump of a program that performs
an illegal operation, such as accessing an invalid memory location. The core dump, which
appears as a file called core in the directory that the program was running, allows the
programmer to determine the cause of the crash. We'll talk about the use of core dumps for
debugging in the section Section 14.1.2 in Chapter 14.

1.5 Software Features

In this section, we'll introduce you to many of the software applications available for Linux
and talk about a number of common computing tasks. After all, the most important part of the
system is the wide range of software available for it. What's even more impressive on Linux is
that most of this software is freely distributable.

1.5.1 Basic Commands and Utilities

Virtually every utility you would expect to find on standard implementations of Unix has
been ported to Linux. This includes basic commands such as Is, awk, tr, sed, bc, more, and so
on. There are Linux ports of many popular software packages including Perl, Python, the Java
Development Kit, and more. You name it, Linux has it. Therefore, you can expect your
familiar working environment on other Unix systems to be duplicated on Linux. All the
standard commands and utilities are there.

Many text editors are available, including vi (as well as "modern" versions, such as vim), ex,
pico, and jove, as well as GNU Emacs and variants, such as XEmacs (which incorporates
extensions for use under the X Window System) and joe. Whatever text editor you're
accustomed to using has more than likely been ported to Linux.

The choice of a text editor is an interesting one. Many Unix users still use "simple" editors
such as vi (in fact, the first edition of this book was written using vi under Linux). However, vi
has many limitations due to its age, and more modern (and complex) editors, such as Emacs,
are gaining popularity. Emacs supports a complete LISP-based macro language and
interpreter, a powerful command syntax, and other fun-filled extensions. Emacs macro

swapped out, this is not generally the case. The term "swap space" originates from the early days of Linux and
should technically be called "paging space."

19

Chapter 1. Introduction to Linux

packages exist to allow you to read electronic mail and news, edit the contents of directories,
and even engage in an artificially intelligent psychotherapy session (indispensable for
stressed-out Linux hackers). In Chapter 9, we include a complete vi tutorial and describe
Emacs in detail.

One interesting note is that most of the basic Linux utilities are GNU software. These GNU
utilities support advanced features not found in the standard versions from BSD or AT&T.
For example, GNU's version of the vi editor, e/vis, includes a structured macro language.
However, the GNU utilities strive to remain compatible with their BSD and System V
counterparts. Many people consider the GNU versions of these programs superior to the
originals. Examples of this are the GNU gzip and bzip2 file-compression utilities, which
compress data much more efficiently than the original Unix compress utility. (Of course, if
you want to be "old school," you can still use programs like ex and compress. This is a good
way to impress your friends who are probably used to using a cushy point-and-click GUI for
everything.)

The most important utility to many users is the shell. The shell is a program that reads and
executes commands from the user. In addition, many shells provide features such as job
control (allowing the user to manage several running processes at once — not as Orwellian as
it sounds), input and output redirection, and a command language for writing shell scripts. A
shell script is a file containing a program in the shell command language, analogous to a
"batch file" under MS-DOS.

Many types of shells are available for Linux. The most important difference between shells is
the command language. For example, the C shell (¢sh) uses a command language somewhat
like the C programming language. The classic Bourne shell uses a different command
language. One's choice of a shell is often based on the command language it provides. The
shell that you use defines, to some extent, your working environment under Linux.

No matter what Unix shell you're accustomed to, some version of it has probably been ported
to Linux. The most popular shell is the GNU Bourne Again Shell (bash), a Bourne shell
variant. bash includes many advanced features, such as job control, command history,
command and filename completion, an Emacs-like (or optionally, a vi-like) interface for
editing the command line, and powerful extensions to the standard Bourne shell language.
Another popular shell is fcsh, a version of the C shell with advanced functionality similar to
that found in bash. Other shells include the Korn shell (ksk), BSD's ash, zsh, a small Bourne-
like shell, and rc, the Plan 9 shell.

What's so important about these basic utilities? Linux gives you the unique opportunity to
tailor a custom system to your needs. For example, if you're the only person who uses your
system, and you prefer to use the vi editor and the bash shell exclusively, there's no reason to
install other editors or shells. The "do it yourself" attitude is prevalent among Linux hackers
and users.

1.5.2 Text Processing and Word Processing
Almost every computer user has a need for some kind of document preparation system. (In

fact, one of the authors has almost entirely forgotten how to write with pen and paper.) In the
PC world, word processing is the norm: it involves editing and manipulating text (often in a

20

Chapter 1. Introduction to Linux

"What-You-See-Is-What-You-Get" [WYSIWYG] environment) and producing printed copies
of the text, complete with figures, tables, and other garnishes.

In the Unix world, fext processing is much more common, which is quite different from the
concept of word processing. With a text processing system, the author enters text using a
"typesetting language" that describes how the text should be formatted. Instead of entering the
text within a special word processing environment, the author may modify the source with
any text editor, such as vi or Emacs. Once the source text (in the typesetting language) is
complete, the user formats the text with a separate program, which converts the source to a
format suitable for printing. This is somewhat analogous to programming in a language such
as C, and "compiling" the document into a printable form.

Many text-processing systems are available for Linux. One is groff, the GNU version of the
classic troff text formatter originally developed by Bell Labs and still used on many Unix
systems worldwide. Another modern text processing system is TgX, developed by Donald
Knuth of computer science fame. Dialects of TgX, such as LATeX, are also available, as are
numerous extensions and packages. One example is PDF&LATEX, a package that Adobe
generates PDF files directly from L*TX documents.

Text processors such as TgX and groff differ mostly in the syntax of their formatting
languages. The choice of one formatting system over another is also based upon what utilities
are available to satisfy your needs, as well as personal taste.

For example, some people consider the groff formatting language to be a bit obscure, so they
use TgX, which is more readable by humans. However, groff is capable of producing plain
ASCII output, viewable on a terminal, while TgX is intended primarily for output to a printing
device. Still, various programs exist to produce plain ASCII from TgX-formatted documents
or to convert TgX to groff, for example.

Another text processing system is Texinfo, an extension to TgX used for software
documentation by the Free Software Foundation. Texinfo is capable of producing a printed
document, or an online-browsable hypertext "Info" document from a single source file. Info
files are the main format of documentation used by GNU software, such as Emacs.

Text processors are used widely in the computing community for producing papers, theses,
magazine articles, and books. (In fact, this book was originally written in the LATgX format,
filtered into a home-grown SGML system, and printed from groff by the publisher.) The
ability to process the source language as a plain-text file opens the door to many extensions to
the text processor itself. Because source documents are not stored in an obscure format,
readable only by a particular word processor, programmers are able to write parsers and
translators for the formatting language, thus extending the system. This approach closely
follows the Unix philosophy of building up applications as a set of smaller tools that work
together, rather than as large, monolithic "black box" systems.

What does such a formatting language look like? In general, the formatting language source
consists mostly of the text itself, along with "control codes" to produce a particular effect,

such as changing fonts, setting margins, creating lists, and so on.

The most famous text formatting language is HTML, the markup language used by virtually
every page on the World Wide Web. Another popular text processing language is Docbook, a

21

Chapter 1. Introduction to Linux

kind of industry-standard set of tags for marking up technical documentation, which is also
used by the Linux Documentation Project (to be discussed later in this chapter). Here is what
one of the earlier paragraphs looks like written in Docbook:

<sect2><title>Basic Commands and Utilities</title>
<para>

Virtually every utility you would expect to find on standard
implementations of Unix has been ported to Linux. This
includes basic commands such as <command>1s</command>,
<command>awk</command>, <command>tr</command>,
<command>sed</command>, <command>bc</command>,
<command>more</command>, and so on. There are Linux ports
of many popular software packages including Perl, Python,
the Java Development Kit, and more. You name it, Linux has it.
Therefore, you can expect your familiar working

environment on other Unix systems to be duplicated on

Linux. All the standard commands and utilities are

there.

</para>

At first glance, the typesetting language may appear to be obscure, but it's actually quite easy
to learn. Using at processing system enforces typographical standards when writing. For
example, all enumerated lists within a document will look the same, unless the author
modifies the definition of the enumerated list "environment."

The primary goal of typesetting languages is to allow the author to concentrate on writing the
actual text, instead of worrying about typesetting conventions. When the example just shown
is printed, the commands in <command> tags will be printed using whatever font, color, or
other convention the publisher has chosen, and a command index can easily be generated too.
Furthermore, the correct chapter number and title are plugged in where the strange-looking
<xref> tag was written, so they are correct even if the authors reorder the chapters after
writing the paragraph.

While there are WYSIWYG editors for HTML, getting used to entering tags by hand, like
those in the previous example, actually takes only a little practice. The more advanced text
editors, such as Emacs and vim, have special macros and environments for editing HTML,
LATEX, and other documents, and include nice features such as special fonts and colors to
represent different kinds of tags. Tools can then generate output in a standard format, such as
PostScript or PDF, and display it on the author's screen or send it to a printer.

WYSIWYG word processors are attractive for many reasons; they provide a powerful, and
sometimes complex, visual interface for editing the document. However, this interface is
inherently limited to those aspects of text layout that are accessible to the user. For example,
many word processors provide a special "format language" for producing complicated
expressions such as mathematical formulae. This format language is identical to text
processing, albeit on a much smaller scale.

The subtle benefit of text processing is that the system allows you to specify exactly what you
mean. Also, text processing systems allow you to edit the source text with any text editor, and
the source is easily converted to other formats. The tradeoff for this flexibility and power is
the lack of a WYSIWYG interface. Many users of word processors are used to seeing the
formatted text as they edit it. On the other hand, when writing with a text processor, one

22

Chapter 1. Introduction to Linux

generally doesn't worry about how the text will appear once it's formatted. The writer learns to
expect how the text should look from the formatting commands used in the source.

There are programs that allow you to view the formatted document on a graphics display
before printing. One example is the xdvi program, which displays a "device-independent" file
generated by the system under the X Window System. Other software applications, such as
xfig, provide a WYSIWYG graphics interface for drawing figures and diagrams, which are
subsequently converted to the text processing language for inclusion in your document.

Many other text processing utilities are available. The powerful METAFONT system, used to
design fonts for TgX, is included with the Linux port of TgX. Other programs include ispell,
an interactive spell checker; makeindex, an index generator for L*TgX documents; and many
groff and TgX-based macro packages for formatting various types of documents and
mathematical texts. Conversion programs are available to translate between TgX or groff
source and many other formats.

1.5.3 Commercial Applications

There has been a groundswell of support by commercial application developers for Linux.
These products include office productivity suites, word processors, scientific applications,
network administration utilities, and large-scale database engines. Linux has become a major
force in the commercial software market, so you may be surprised to find how many popular
commercial applications are available for Linux. We can't possibly discuss all of them here,
so we'll only touch on the most popular applications and briefly mention some of the others.

StarOffice is a complete office productivity suite for Linux, released by Sun Microsystems
(originally developed by a smaller company called Star Division, which was bought by Sun).
This suite, which is also available for Windows and Solaris, is more or less a clone of
Microsoft Office, including a word processor, spreadsheet, HTML editor, presentation
manager, and other tools. It is capable of reading file formats from a wide range of similar
applications (including Microsoft Office) and is available for free download for
noncommercial use.

Corel has released WordPerfect Office 2000 for Linux, another office suite which includes a
word processor, spreadsheet, presentation software, personal information manager, and other
applications. It is free for personal use and commercial licenses are also available. Corel has
also released the CoreDRAW professional graphics suite for Linux.

Oracle, IBM, Informix, Sybase, and Interbase have released commercial database engines for
Linux. Many of the Linux database products have demonstrated better performance than their
counterparts running on Windows 2000 systems.

One very popular database for Linux is MySQL, a free and easy-to-use database engine
available from http://www.mysql.com. Because MySQL is easy to install, configure, and use,
it has rapidly become the database engine of choice for many applications that can forego the
complexity of the various proprietary engines. Furthermore, even though it's free software,
MySQL is supported professionally by the company that developed it, MySQL AB. We
describe the basic use of MySQL in Chapter 18.

23

Chapter 1. Introduction to Linux

MySQL does not include some of the more advanced features of the proprietary databases,
however. Some database users prefer the open source database PostgresSQL, and Red Hat
features it in some of its products.

A wide range of enterprise applications are available for Linux in addition to databases. Linux
is one of the most popular platforms for Internet service hosting, so it is appropriate that high-
end platforms for scalable web sites, including BEA WebLogic and IBM WebSphere, have
been released for Linux. Commercial, high-performance Java Virtual Machines and other
software are available from Sun, IBM, and other vendors. IBM has released the popular Lotus
Domino messaging and web application server, as well as the WebSphere MQ (formerly
MQSeries) messaging platform.

Scientists, engineers, and mathematicians will find that a range of popular commercial
products are available for Linux, such as Maple, Mathematica, MATLAB, and Simulink.
Other commercial applications for Linux include high-end CAD systems, network
management tools, firewalls, and software development environments.

1.5.4 Programming Languages and Utilities

Linux provides a complete Unix programming environment, including all the standard
libraries, programming tools, compilers, and debuggers that you would expect to find on other
Unix systems. The most commonly used compiler on Linux is the GNU's Compiler
Collection, or gcc. gec is capable of compiling C, C++, Objective C (another object-oriented
dialect of C), Chill (a programming language mainly used for telecommunications),
FORTRAN, and Java. Within the Unix software development world, applications and systems
programming is usually done in C or C++, and gcc is one of the best C/C++ compilers
around, supporting many advanced features and optimizations.

Java, a relative newcomer on the programming-language scene, is fully supported under
Linux. Several vendors and independent projects have released ports of the Java Development
Kit for Linux, including Sun, IBM, and the Blackdown Project (which did one of the first
ports of Java for Linux). Java is an object-oriented programming language and runtime
environment that supports a diverse range of applications like web page applets, Internet-
based distributed systems, database connectivity, and more. Programs written for Java can be
run on any system (regardless of CPU architecture or operating system) that supports the Java
Virtual Machine. A number of Java "just-in-time" (or JIT) compilers are available, and the
IBM and Sun Java Development Kits (JDKs) for Linux come bundled with high-performance
JIT compilers that perform as well as those found on Windows or other Unix systems. IBM
has released VisualAge for Java, a complete Java integrated development environment. gcc is
also capable of compiling Java programs directly to executables, and includes limited support
for the standard JDK libraries.

Besides C, C++, and Java, many other compiled and interpreted programming languages have
been ported to Linux, such as Smalltalk, FORTRAN, Pascal, LISP, Scheme, and Ada. In
addition, various assemblers for writing machine code are available. A network of open
source developers is developing a project called Mono with the goal of duplicating the
building blocks of Microsoft's .NET project on Unix and Linux systems. Perhaps the most
important class of programming languages for Linux are the many scripting languages,
including Perl (the script language to end all script languages), Python (the first scripting
language to be designed as object-oriented from the ground up), and Tcl/Tk (a shell-like

24

Chapter 1. Introduction to Linux

command-processing system that includes support for developing simple X Window System
applications).

Linux systems make use of the advanced gdb debugger, which allows you to step through a
program to find bugs or examine the cause for a crash using a core dump. gprof, a profiling
utility, will give you performance statistics for your program, letting you know where your
program is spending most of its time. The Emacs and vim text editors provide interactive
editing and compilation environments for various programming languages. Other tools that
are available for Linux include the GNU make build utility, used to manage compilation of
large applications, as well as source-code control systems such as CVS and Revision Control
System.

Linux is an ideal system for developing Unix applications. It provides a modern programming
environment with all the bells and whistles, and many professional Unix programmers claim
that Linux is their favorite operating system for development and debugging. Computer
science students can use Linux to learn Unix programming and to explore other aspects of the
system, such as kernel architecture. With Linux, not only do you have access to the complete
set of libraries and programming utilities, but you also have the complete kernel and library
source code at your fingertips. Chapter 13, and Chapter 14 are devoted to the programming
languages and tools available for Linux.

1.5.5 The X Window System

The X Window System is the standard GUI for Unix systems. It was originally developed at
MIT in the 1980s with the goal of allowing applications to run across a range of Unix
workstations from different vendors. X is a powerful graphical environment supporting many
applications. Many X-specific applications have been written, such as games, graphics
utilities, programming and documentation tools, and so on.

Unlike Microsoft Windows, the X Window System has built-in support for networked
applications: for example, you can run an X application on a server machine and have its
windows display on your desktop, over the network. Also, X is extremely customizable: you
can easily tailor just about any aspect of the system to your liking. You can adjust the fonts,
colors, window decorations, and icons for your personal taste. You can go so far as to
configure keyboard macros to run new applications at a keystroke. It's even possible for X to
emulate the Windows and Macintosh desktop environments, if you want to keep a familiar
interface.

The X Window System is freely distributable. However, many commercial vendors have
distributed proprietary enhancements to the original X software. The version of X available
for Linux is known as XFree86, which is a port of X11R6 (X Window System Version 11,
Release 6) made freely distributable for PC-based Unix systems, such as Linux. XFree86
supports a wide range of video hardware, including standard VGA and many accelerated
video adapters. XFree86 is a complete distribution of the X software, containing the X server
itself, many applications and utilities, programming libraries, and documentation. It comes
bundled with nearly every Linux distribution.

Standard X applications include xterm (a terminal emulator used for most text-based

applications within an X window), xdm (the X Session Manager, which handles logins),
xclock (a simple clock display), xman (an X-based manual page reader), and more. The many

25

Chapter 1. Introduction to Linux

X applications available for Linux are too numerous to mention here, but the base XFree86
distribution includes the "standard" applications found in the original MIT release. Many
others are available separately, and theoretically any application written for X should compile
cleanly under Linux.

The look and feel of the X interface are controlled to a large extent by the window manager.
This friendly program is in charge of the placement of windows, the user interface for
resizing, iconifying, and moving windows, the appearance of window frames, and so on. The
standard XFree86 distribution includes several window managers, including the popular
Sfvwm?2. fywm?2 provides a number of advanced features, including a virtual desktop: if the user
moves the mouse to the edge of the screen, the entire desktop is shifted as if the display were
much larger than it actually is. fywm?2 is greatly customizable and allows all functions to be
accessed from the keyboard as well as from the mouse.

The XFree86 distribution contains programming libraries and includes files for those wily
programmers who wish to develop X applications. Various widget sets, such as Athena, Open
Look, and Xaw3D, are supported. All the standard fonts, bitmaps, manual pages, and
documentation are included. PEX (a programming interface for 3D graphics) is also
supported, as is Mesa, a free implementation of the OpenGL 3D graphics primitives.

In Chapter 10 and Chapter 11, we'll discuss how to install and use the X Window System on
your Linux machine.

1.5.6 KDE and GNOME

While the X Window System provides a flexible windowing system, many users want a
complete desktop environment, with a customizable look and feel for all windows and
widgets (such as buttons and scrollbars), a simplified user interface, and advanced features
such as the ability to "drag and drop" data from one application to another. The KDE and
GNOME projects are separate efforts that are striving to provide such an advanced desktop
environment for Linux. By building up a powerful suite of development tools, libraries, and
applications that are integrated into the desktop environment, KDE and GNOME aim to usher
in the next era of Linux desktop computing. Both systems provide a rich GUI, window
manager, utilities, and applications that rival or exceed the features of systems such as the
Windows 2000 desktop.

With KDE and GNOME, even casual users and beginners will feel right at home with Linux.
Most distributions automatically configure one of these desktop environments during
installation, making it unnecessary to ever touch the text-only console interface.

While both KDE and GNOME aim to make the Unix environment more user-friendly, they
have different emphases. KDE's main goals are ease of use, stability, and user-interface
compatibility with other computing environments (such as Windows 2000). GNOME, on the
other hand, aims more at good looks and maximum configurability. We discuss both of these
systems in Chapter 11.

1.5.7 Networking

Linux boasts one of the most powerful and robust networking systems in the world — more
and more people are finding that Linux makes an excellent choice as a network server. Linux

26

Chapter 1. Introduction to Linux

supports the TCP/IP networking protocol suite that drives the entire Internet, as well as many
other protocols, including IPv6 (a new version of the IP protocol for the next-generation
Internet), and UUCP (used for communication between Unix machines over serial lines).
With Linux, you can communicate with any computer on the Internet, using Ethernet
(including Fast and Gigabit Ethernet), Token Ring, dial-up connection, wireless network,
packet radio, serial line, ISDN, ATM, IRDA, AppleTalk, IPX (Novell NetWare), and many
other network technologies. The full range of Internet-based applications is available,
including World Wide Web browsers, web servers, FTP, email, chat, news, ssh, telnet, and
more.

Most Linux users use a dial-up connection through an ISP to connect to the Internet from
home. Linux supports the popular PPP and SLIP protocols, used by most ISPs for dial-in
access. If you have a broadband connection, such as a T1 line, cable modem, DSL, or other
service, Linux supports those technologies as well. You can even configure a Linux machine
to act as a router and firewall for an entire network of computers, all connecting to the
Internet through a single dial-up or broadband connection.

Linux supports a wide range of web browsers, including Netscape Navigator, Mozilla (the
open source spin-off of the Netscape browser), Konquerer (another open source browser
packaged with KDE), and the text-based Lynx browser. The Emacs text editor even includes a
small text-based web browser.

Linux also hosts a range of web servers, such as the popular and free Apache web server. In
fact, it's estimated that Apache running on Linux systems drives more web sites than any
other platform in the world. Apache is easy to set up and use; we'll show you how in
Chapter 16.

A full range of mail and news readers are available for Linux, such as MH, Elm, Pine, #rn, as
well as the mail/news readers included with the Netscape and Mozilla web browsers. Many of
these are compatible with standard mail and news protocols such as IMAP and POP.
Whatever your preference, you can configure your Linux system to send and receive
electronic mail and news from all over the world.

A variety of other network services are available for Linux. Samba is a package that allows
Linux machines to act as a Windows file and print server. NFS allows your system to share
files seamlessly with other machines on the network. With NFS, remote files look to you as if
they were located on your own system's drives. FTP allows you to transfer files to and from
other machines on the network. Other networking features include NNTP-based electronic
news systems such as C News and INN; the sendmail, exim, and smail mail transfer agents;
ssh, telnet, and rsh, which allow you to log in and execute commands on other machines on
the network; and finger, which allows you to get information on other Internet users. There
are tons of TCP/IP-based applications and protocols out there.

If you have experience with TCP/IP applications on other Unix systems, Linux will be
familiar to you. The system provides a standard socket programming interface, so virtually
any program that uses TCP/IP can be ported to Linux. The Linux X server also supports
TCP/IP, allowing you to display applications running on other systems on your Linux display.
Administration of Linux networking will be familiar to those coming from other Unix
systems, as the configuration and monitoring tools are similar to their BSD counterparts.

27

Chapter 1. Introduction to Linux

In Chapter 15, we'll discuss the configuration and setup of TCP/IP, including PPP, for Linux.
We'll also discuss configuration of web browsers, web servers, and mail software.

1.5.8 Laptop Support

Linux includes a number of laptop-specific features, such as PCMCIA (or "PC Card") support
and APM. The PCMCIA Tools package for Linux includes drivers for many PCMCIA
devices, including modems, Ethernet cards, and SCSI adapters. APM allows the kernel to
keep track of the laptop's battery power and perform certain actions (such as an automated
shutdown) when power is low; it also allows the CPU to go into "low-power" mode when not
in use. This is easy to configure as a kernel option. Various tools interact with APM, such as
apm (which displays information on battery status) and apmd (which logs battery status and
can be used to trigger power events). These should be included with most Linux distributions.

1.5.9 Interfacing with Windows and MS-DOS

Various utilities exist to interface with the world of Windows and MS-DOS. The most well-
known application is a project known as Wine — a Microsoft Windows emulator for the X
Window System under Linux. The intent of this project, which is still under development, is
to allow Microsoft Windows applications to run directly under Linux and other Intel-based
operating systems. This is similar to the proprietary WABI Windows emulator from Sun
Microsystems. Wine is in a process of continual development, and now runs a wide variety of
Windows software, including many desktop applications and games. See
http://www.winehq.com for details of the project's progress.

Linux provides a seamless interface for transferring files between Linux and Windows
systems. You can mount a Windows partition or floppy under Linux, and directly access
Windows files as you would any others. In addition, there is the mfools package, which allows
direct access to MS-DOS-formatted floppies, as well as htools, which does the same for
Macintosh floppy disks.

Another application is the Linux MS-DOS Emulator, or DOSEMU, which allows you to run
many MS-DOS applications directly from Linux. While MS-DOS-based applications are
rapidly becoming a thing of the past, there are still a number of interesting MS-DOS tools and
games that you might want to run under Linux. It's even possible to run the old Microsoft
Windows 3.1 under DOSEMU.

Although Linux does not have complete support for emulating Windows and MS-DOS
environments, you can easily run these other operating systems on the same machine with
Linux, and choose which operating system to run when you boot the machine. We'll show you
how to set up the LILO bootloader, which allows you to select between Linux, Windows, and
other operating systems at boot time.

Another popular option is to run a system-level "virtual machine," which literally allows you
to run Linux and Windows af the same time. A virtual machine is a software application that
emulates many of the hardware features of your system, tricking the operating system into
believing that it is running on a physical computer. Using a virtual machine, you can boot
Linux and then run Windows at the same time — with both Linux and Windows applications
on your desktop at once. Alternately, you can boot Windows and run Linux under the virtual
machine. While there is some performance loss when using virtual machines, many people are

28

Chapter 1. Introduction to Linux

very happy employing them for casual use, such as running a Windows-based word processor
within a Linux desktop. The most popular virtual machines are VMWare
(http://www.vmware.com/), which is a commercial product, and Plex86
(http://www.plex86.0org/), which is an open source project.

1.5.10 Other Applications

A host of miscellaneous applications are available for Linux, as one would expect from an
operating system with such a diverse set of users. Linux's primary focus is currently for
personal Unix computing, but this is rapidly changing. Business and scientific software are
expanding, and commercial software vendors have contributed a growing pool of
applications.

The scientific community has wholly embraced Linux as the platform of choice for
inexpensive numerical computing. A large number of scientific applications have been
developed for Linux, including the popular technical tools MATLAB and Mathematica. A
wide range of free packages are also available, including FELT (a finite-element analysis
tool), Spice (a circuit design and analysis tool), and Khoros (an image/digital signal
processing and visualization system). Many popular numerical computing libraries have been
ported to Linux, including the LAPACK linear algebra library. There is also a Linux-
optimized version of the BLAS code upon which LAPACK depends.

Linux is one of the most popular platforms for parallel computing using clusters, which are
collections of inexpensive machines usually connected with a fast (gigabit-per-second or
faster) network. The NASA Beowulf project first popularized the idea of tying a large number
of Linux-based PCs into a massive supercomputer for scientific and numerical computing.
Today, Linux-based clusters are the rule, rather than the exception, for many scientific
applications. In fact, Linux clusters are finding their way into increasingly diverse
applications — for example, the Google search engine uses a cluster of 4,000 Linux
machines!

As with any operating system, Linux has its share of games. A number of popular commercial
games have been released for Linux, including Quake, Quake II, Quake III Arena, Doom,
SimCity 3000, Descent, and more. Most of the popular games support play over the Internet
or a local network, and clones of other commercial games are popping up for Linux. There are
also classic text-based dungeon games such as Nethack and Moria; MUDs (multiuser
dungeons, which allow many users to interact in a text-based adventure) such as DikuMUD
and TinyMUD; and a slew of free graphical games, such as xtetris, netrek, and Xboard
(the X11 frontend to gnuchess).

For audiophiles, Linux has support for a wide range of sound hardware and related software,
such as CDplayer (a program that can control a CD-ROM drive as a conventional CD player,
surprisingly enough), MIDI sequencers and editors (allowing you to compose music for
playback through a synthesizer or other MIDI-controlled instrument), and sound editors for
digitized sounds.

Can't find the application you're looking for? A number of web sites provide comprehensive
directories of Linux applications. A few of the most popular Linux software directories are
Freshmeat (http://www.freshmeat.net), Icewalkers (http://www.icewalkers.com), and Linux
on Dave Central (http:/linux.davecentral.com/). While these directories are far from

29

Chapter 1. Introduction to Linux

complete, they contain a great deal of software, all categorized and rated by users. Take a look
at these sites just to see the enormous amount of code that has been developed for Linux.

If you absolutely can't find what you need, you can always attempt to port the application
from another platform to Linux. Or, if all else fails, you can write the application yourself.
That's the spirit of Free Software — if you want something to be done right, do it yourself!
While it's sometimes daunting to start a major software project on your own, many people
find that if they can release an early version of the software to the public, many helpers pop
up in the free software community to carry on the project.

1.6 About Linux's Copyright

Linux is covered by what is known as the GNU GPL. The GPL, which is sometimes referred
to as a "copyleft" license, was developed for the GNU project by the Free Software
Foundation. It makes a number of provisions for the distribution and modification of "free
software." "Free," in this sense, refers to freedom, not just cost. The GPL has always been
subject to misinterpretation, and we hope that this summary will help you to understand the
extent and goals of the GPL and its effect on Linux. A complete copy of the GPL is available
at http://www.gnu.org/copyleft/gpl.html.

Originally, Linus Torvalds released Linux under a license more restrictive than the GPL,
which allowed the software to be freely distributed and modified, but prevented any money
changing hands for its distribution and use. The GPL allows people to sell and make profit
from free software, but doesn't allow them to restrict the right for others to distribute the
software in any way.

First, we should explain that "free software" covered by the GPL is not in the public domain.
Public domain software is software that is not copyrighted and is literally owned by the
public. Software covered by the GPL, on the other hand, is copyrighted to the author or
authors. This means that the software is protected by standard international copyright laws
and that the author of the software is legally defined. Just because the software may be freely
distributed doesn't mean it is in the public domain.

GPL-licensed software is also not "shareware." Generally, shareware software is owned and
copyrighted by the author, but the author requires users to send in money for its use after
distribution. On the other hand, software covered by the GPL may be distributed and used free
of charge.

The GPL also allows people to take and modify free software, and distribute their own
versions of the software. However, any derived works from GPL software must also be
covered by the GPL. In other words, a company could not take Linux, modify it, and sell it
under a restrictive license. If any software is derived from Linux, that software must be
covered by the GPL as well.

People and organizations can distribute GPL software for a fee and can even make a profit
from its sale and distribution. However, in selling GPL software, the distributor can't take
those rights away from the purchaser; that is, if you purchase GPL software from some
source, you may distribute the software for free or sell it yourself as well.

30

Chapter 1. Introduction to Linux

This might sound like a contradiction at first. Why sell software for profit when the GPL
allows anyone to obtain it for free? When a company bundles a large amount of free software
on a CD-ROM and distributes it, it needs to charge for the overhead of producing and
distributing the CD-ROM, and it may even decide to make profit from the sale of the
software. This is allowed by the GPL.

Organizations that sell free software must follow certain restrictions set forth in the GPL.
First, they can't restrict the rights of users who purchase the software. This means that if you
buy a CD-ROM of GPL software, you can copy and distribute that CD-ROM free of charge,
or you can resell it yourself. Second, distributors must make it obvious to users that the
software is indeed covered by the GPL. Third, distributors must provide, free of charge, the
complete source code for the software being distributed, or they must point their customers on
demand to where the software can be downloaded. This will allow anyone who purchases
GPL software to make modifications to that software.

Allowing a company to distribute and sell free software is a very good thing. Not everyone
has access to the Internet to download software, such as Linux, for free. The GPL allows
companies to sell and distribute software to those people who do not have free (cost-wise)
access to the software. For example, many organizations sell Linux on floppy, tape, or CD-
ROM via mail order, and make profit from these sales. The developers of Linux may never
see any of this profit; that is the understanding that is reached between the developer and the
distributor when software is licensed by the GPL. In other words, Linus knew that companies
may wish to sell Linux and that he may not see a penny of the profits from those sales. (If
Linus isn't rich, at least he's famous!)

In the free-software world, the important issue is not money. The goal of free software is
always to develop and distribute fantastic software and to allow anyone to obtain and use it. In
the next section, we'll discuss how this applies to the development of Linux.

1.7 Open Source and the Philosophy of Linux

When new users encounter Linux, they often have a few misconceptions and false
expectations of the system. Linux is a unique operating system, and it's important to
understand its philosophy and design in order to use it effectively. At the center of the Linux
philosophy is a concept that we now call open source software.

Open source is a term that applies to software for which the source code — the inner
workings of the program — is freely available for anyone to download, modify, and
redistribute. Software covered under the GNU GPL, described in the previous section, fits
into the category of open source. Not surprisingly, though, so does software that uses
copyright licenses that are similar, but not identical, to the GPL. For example, software that
can be freely modified but that does not have the same strict requirements for redistribution as
the GPL is also considered open source. Various licenses fit this category, including the BSD
License and the Apache Software License.

The so-called "open source" and "free software" development models started with the Free
Software Foundation and were popularized with Linux. They represent a totally different way
of producing software that opens up every aspect of development, debugging, testing, and
study to anyone with enough interest in doing so. Rather than relying upon a single
corporation to develop and maintain a piece of software, open source allows the code to

31

Chapter 1. Introduction to Linux

evolve, openly, in a community of developers and users who are motivated by desire to create
good software, rather than simply make a profit.

O'Reilly & Associates, Inc. has published a book, Open Sources, which serves as a good
introduction to the open source development model. It's a collection of essays about the open
source process by leading developers (including Linus Torvalds and Richard Stallman) and
was edited by Chris DiBona, Sam Ockman, and Mark Stone.

Open source has received a lot of media attention, and some are calling the phenomenon the
"next wave" in software development, which will sweep the old way of doing things under the
carpet. It still remains to be seen whether that will happen, but there have been some
encouraging events that make this outcome seem likely. For example, Netscape Corporation
has released the code for its web browser as an open source project called Mozilla, and
companies such as Sun Microsystems, IBM, and Apple have released certain products as open
source in the hopes that they will flourish in a community-driven software development
effort.

Open source has received a lot of media attention, and Linux is at the center of all of it. In
order to understand where the Linux development mentality is coming from, however, it
might make sense to take a look at how commercial software has traditionally been built.

Commercial software houses tend to base development on a rigorous policy of quality
assurance, source and revision control systems, documentation, and bug reporting and
resolution. Developers are not allowed to add features or to change key sections of code on a
whim: they must validate the change as a response to a bug report and consequently "check
in" all changes to the source control system so that the changes can be backed out if
necessary. Each developer is assigned one or more parts of the system code, and only that
developer may alter those sections of the code while it is "checked out."

Internally, the quality assurance department runs rigorous test suites (so-called "regression
tests") on each new pass of the operating system and reports any bugs. It's the responsibility
of the developers to fix these bugs as reported. A complicated system of statistical analysis is
employed to ensure that a certain percentage of bugs are fixed before the next release, and that
the system as a whole passes certain release criteria.

In all, the process used by commercial software developers to maintain and support their code
is very complicated, and quite reasonably so. The company must have quantitative proof that
the next revision of the software is ready to be shipped. It's a big job to develop a commercial
software system, often large enough to employ hundreds (if not thousands) of programmers,
testers, documenters, and administrative personnel. Of course, no two commercial software
vendors are alike, but you get the general picture. Smaller software houses, such as startups,
tend to employ a scaled-down version of this style of development.

On the opposite end of the spectrum sits Linux, which is, and more than likely always will be,
a hacker's operating system.” Although many open source projects have adopted elements of
commercial software development techniques, such as source control and bug tracking

* Our definition of "hacker" is a feverishly dedicated programmer — a person who enjoys exploiting computers
and generally doing interesting things with them. This is in contrast to the common connotation of "hacker" as a
computer wrongdoer or an outlaw.

32

Chapter 1. Introduction to Linux

systems, the collaborative and distributed nature of Linux's development is a radical departure
from the traditional approach.

Linux is primarily developed as a group effort by volunteers on the Internet from all over
the world. No single organization is responsible for developing the system. For the most part,
the Linux community communicates via various mailing lists and web sites. A number of
conventions have sprung up around the development effort: for example, programmers
wanting to have their code included in the "official" kernel should mail it to Linus Torvalds.
He will test the code and include it in the kernel (as long as it doesn't break things or go
against the overall design of the system, he will more than likely include it). As Linux has
grown, this job has become too large for Linus to do himself (plus, he has kids now), so other
volunteers are responsible for testing and integrating code into certain aspects of the kernel,
such as the network subsystem.

The system itself is designed with a very open-ended, feature-rich approach. A new version of
the Linux kernel will typically be released about every few weeks (sometimes even more
frequently than this). Of course, this is a very rough figure; it depends on several factors,
including the number of bugs to be fixed, the amount of feedback from users testing
prerelease versions of the code, and the amount of sleep that Linus has had that week.

Suffice it to say that not every single bug has been fixed and not every problem ironed out
between releases. (Of course, this is always true of commercial software as well!) As long as
the system appears to be free of critical or oft-manifesting bugs, it's considered "stable" and
new revisions are released. The thrust behind Linux development is not an effort to release
perfect, bug-free code; it's to develop a free implementation of Unix. Linux is for the
developers, more than anyone else.

Anyone who has a new feature or software application to add to the system generally makes it
available in an "alpha" stage — that is, a stage for testing by those brave users who want to
bash out problems with the initial code. Because the Linux community is largely based on the
Internet, alpha software is usually uploaded to one or more of the various Linux web sites (see
Appendix A), and a message is posted to one of the Linux mailing lists about how to get and
test the code. Users who download and test alpha software can then mail results, bug fixes, or
questions to the author.

After the initial problems in the alpha code have been fixed, the code enters a "beta" stage, in
which it's usually considered stable but not complete (that is, it works, but not all the features
may be present). Otherwise, it may go directly to a "final" stage in which the software is
considered complete and usable. For kernel code, once it's complete, the developer may ask
Linus to include it in the standard kernel, or as an optional add-on feature to the kernel.

Keep in mind these are only conventions, not rules. Some people feel so confident with their
software that they don't need to release an alpha or test version. It's always up to the developer
to make these decisions.

What happened to regression testing and the rigorous quality process? It's been replaced by
the philosophy of "release early and often." Real users are the best testers because they try out
the software in a variety of environments and in a host of demanding real-life applications that
can't be easily duplicated by any software Quality Assurance group. One of the best features

33

Chapter 1. Introduction to Linux

of this development and release model is that bugs (and security flaws) are often found,
reported, and fixed within kours, not days or weeks.

You might be amazed that such a nonstructured system of volunteers programming and
debugging a complete Unix system could get anything done at all. As it turns out, it's one of
the most efficient and motivated development efforts ever employed. The entire Linux kernel
was written from scratch, without employing any code from proprietary sources. A great deal
of work was put forth by volunteers to port all the free software under the sun to the Linux
system. Libraries were written and ported, filesystems developed, and hardware drivers
written for many popular devices.

The Linux software is generally released as a distribution, which is a set of prepackaged
software making up an entire system. It would be quite difficult for most users to build a
complete system from the ground up, starting with the kernel, then adding utilities, and
installing all necessary software by hand. Instead, there are a number of software distributions
including everything you need to install and run a complete system. Again, there is no
standard distribution; there are many, each with their own advantages and disadvantages. In
this book, we describe how to install the Red Hat, SuSE, and Debian distributions, but this
book can help you with any distribution you choose.

Despite the completeness of the Linux software, you still need a bit of Unix know-how to
install and run a complete system. No distribution of Linux is completely bug-free, so you
may be required to fix small problems by hand after installation. While some readers might
consider this a pain, a better way to think about it is as the "joy of Linux" — that of having
fun tinkering with, learning about, and fixing up your own system. It's this very attitude that
distinguishes Linux enthusiasts from mere users. Linux can be either a hobby, an adventure
sport, or a lifestyle. (Just like snowboarding and mountain biking, Linux geeks have their own
lingo and style of dress — if you don't believe us, hang out at any Linux trade show!) Many
new Linux users report having a great time learning about this new system, and find that
Linux rekindles the fascination they had when first starting to experiment with computers.

1.7.1 Hints for Unix Novices

Installing and using your own Linux system doesn't require a great deal of background in
Unix. In fact, many Unix novices successfully install Linux on their systems. This is a
worthwhile learning experience, but keep in mind that it can be very frustrating to some. If
you're lucky, you will be able to install and start using your Linux system without any Unix
background. However, once you are ready to delve into the more complex tasks of running
Linux — installing new software, recompiling the kernel, and so forth — having background
knowledge in Unix is going to be a necessity. (Note, however, that many distributions of
Linux are as easy to install and configure as Windows 98 and certainly easier than Windows
2000.)

Fortunately, by running your own Linux system, you will be able to learn the essentials of
Unix necessary to perform these tasks. This book contains a good deal of information to help
you get started. Chapter 4 is a tutorial covering Unix basics, and Chapter 5 contains
information on Linux system administration. You may wish to read these chapters before you
attempt to install Linux at all; the information contained therein will prove to be invaluable
should you run into problems.

34

Chapter 1. Introduction to Linux

Just remember that nobody can expect to go from being a Unix novice to a Unix system
administrator overnight. No implementation of Unix is expected to run trouble- and
maintenance-free, and you will undoubtedly encounter hang-ups along the way. Treat this as
an opportunity to learn more about Linux and Unix, and try not to get discouraged when
things don't always go as expected!

1.7.2 Hints for Unix Gurus

Even those people with years of Unix programming and system administration experience
may need assistance before they are able to pick up and install Linux. There are still aspects
of the system Unix wizards need to be familiar with before diving in. For one thing, Linux is
not a commercial Unix system. It doesn't attempt to uphold the same standards as other Unix
systems you may have come across. But in some sense, Linux is redefining the Unix world by
giving all other systems a run for their money. To be more specific, while stability is an
important factor in the development of Linux, it's not the only factor.

More important, perhaps, is functionality. In many cases, new code will make it into the
standard kernel even though it's still buggy and not functionally complete. The assumption is
that it's more important to release code that users can test and use than delay a release until it's
"complete." Nearly all open source software projects have an alpha release before they are
completely tested. In this way, the open source community at large has a chance to work with
the code, test it, and develop it further, while those who find the alpha code "good enough"
for their needs can use it. Commercial Unix vendors rarely, if ever, release software in this
manner.

Even if you're a Unix ultra-wizard who can disassemble Solaris kernels in your sleep and
recode an AIX superblock with one hand tied behind your back, Linux might take some
getting used to. The system is very modern and dynamic, with a new kernel release
approximately every few months and new utilities constantly being released. One day your
system may be completely up to date with the current trend, and the next day the same system
is considered to be in the Stone Age.

With all of this dynamic activity, how can you expect to keep up with the ever-changing
Linux world? For the most part, it's best to upgrade incrementally; that is, upgrade only those
parts of the system that need upgrading, and then only when you think an upgrade is
necessary. For example, if you never use Emacs, there is little reason to continuously install
every new release of Emacs on your system. Furthermore, even if you are an avid Emacs user,
there is usually no reason to upgrade it unless you find that a missing feature is in the next
release. There is little or no reason to always be on top of the newest version of software.

Keep in mind that Linux was developed by its users. This means, for the most part, that the
hardware supported by Linux is that which users and developers actually have access to. As it
turns out, most of the popular hardware and peripherals for 80x86 systems are supported (in
fact, Linux probably supports more hardware than any commercial implementation of Unix).
However, some of the more obscure and esoteric devices, as well as those with proprietary
drivers for which the manufacturers do not easily make the specifications available, aren't
supported yet. As time goes on, a wider range of hardware will be supported, so if your
favorite devices aren't listed here, chances are that support for them is forthcoming.

35

Chapter 1. Introduction to Linux

Another drawback for hardware support under Linux is that many companies have decided to
keep the hardware interface proprietary. The upshot of this is that volunteer Linux developers
simply can't write drivers for those devices (if they could, those drivers would be owned by
the company that owned the interface, which would violate the GPL). The companies that
maintain proprietary interfaces write their own drivers for operating systems, such as
Microsoft Windows; the end user (that's you) never needs to know about the interface.
Unfortunately, this does not allow Linux developers to write drivers for those devices.

Little can be done about the situation. In some cases, programmers have attempted to write
hackish drivers based on assumptions about the interface. In other cases, developers work
with the company in question and attempt to obtain information about the device interface,
with varying degrees ofsuccess.

1.8 Sources of Linux Information

As you have probably guessed, many sources of information about Linux are available, apart
from this book.

1.8.1 Online Documents

If you have access to the Internet, you can get many Linux documents via web and
anonymous FTP sites all over the world. If you do not have direct Internet access, these
documents may still be available to you; many Linux distributions on CD-ROM contain all
the documents mentioned here and are often available off the retail shelf. Also, they are
distributed on many other networks, such as Fidonet and CompuServe.

A great number of web and FTP archive sites carry Linux software and related documents.
Appendix A contains a listing of some of the Linux documents available via the Internet.

Examples of available online documents are the Linux FAQ, a collection of frequently asked
questions about Linux; the Linux HOWTO documents, each describing a specific aspect of
the system — including the Installation HOWTO, the Printing HOWTO, and the Ethernet
HOWTO; and the Linux META-FAQ, a list of other sources of Linux information on the
Internet.

Most of these documents are also posted regularly to one or more Linux-related Usenet
newsgroups; see Section 1.8.3 later in this chapter.

The Linux Documentation home page is available to web users at http://www.tlpd.org. This
page contains many HOWTOs and other documents, as well as pointers to other sites of
interest to Linux users, including the Linux Documentation Project manuals (see the
following section).

1.8.2 Books and Other Published Works

The Bibliography at the end of this book points you to a wealth of sources that will help you
use your system. There are a number of published works specifically about Linux. In addition,
a number of free books are distributed on the Internet by the Linux Documentation Project
(LDP), a project carried out over the Internet to write and distribute a bona fide set of
"manuals" for Linux. These manuals are analogs to the documentation sets available with

36

Chapter 1. Introduction to Linux

commercial versions of Unix: they cover everything from installing Linux to using and
running the system, programming, networking, kernel development, and more.

The LDP manuals are available via the Web, as well as via mail order from several sources.
The Bibliography lists the manuals that are available and covers the means of obtaining them
in detail. O'Reilly & Associates, Inc. has published the Linux Network Administrator's Guide
from the LDP.

Aside from the growing number of Linux books, there are a large number of books about
Unix in general that are certainly applicable to Linux — as far as using and programming the
system is concerned, Linux doesn't differ greatly from other implementations of Unix in most
respects. In fact, this book is meant to be complemented by the large library of Unix books
currently available; here, we present the most important Linux-specific details and hope you
will look to other sources for more in-depth information.

Armed with a number of good books about using Unix, as well as the book you hold in your
hands, you should be able to tackle just about anything. The Bibliography includes a list of
highly recommended Unix books, for Unix newcomers and wizards alike.

There are at least two monthly magazines about Linux: Linux Journal and Linux Magazine.
These are an excellent way to keep in touch with the many goings-on in the Linux
community.

1.8.3 Usenet Newsgroups

Usenet is a worldwide electronic news and discussion forum with a heavy contingent of so-
called "newsgroups," or discussion areas devoted to a particular topic. Much of the
development of Linux has been done over the waves of the Internet and Usenet, and not
surprisingly, a number of Usenet newsgroups are available for discussions about Linux.

There are far too many newsgroups devoted to Linux to list here. The ones dealing directly
with Linux are under the comp.os.linux hierarchy, and you'll find others on related topics like
comp.windows.x.

1.8.4 Internet Mailing Lists

If you have access to Internet electronic mail, you can participate in a number of mailing lists
devoted to Linux. These run the gamut from kernel hacking to basic user questions. Many of
the popular Linux mailing lists have associated web sites with searchable archives, allowing
you to easily find answers to common questions. We list some of these resources in Appendix
A.

1.9 Getting Help

You will undoubtedly require some degree of assistance during your adventures in the Linux
world. Even the most wizardly of Unix wizards is occasionally stumped by some quirk or
feature of Linux, and it's important to know how and where to find help when you need it.

The primary means of getting help in the Linux world are Internet mailing lists and Usenet
newsgroups, as described earlier. A number of businesses also provide commercial support

37

Chapter 1. Introduction to Linux

for Linux. A "subscription fee" allows you to call consultants for help with your Linux
problems. Several Linux distribution vendors provide online and telephone-based technical
support, which can often be very helpful. However, if you have access to Usenet and Internet
mail, you may find the free support found there just as good.

Keeping the following suggestions in mind should improve your experiences with Linux and
guarantee you more success in finding help to your problems:

e Consult all available documentation first. The first thing to do when encountering a
problem is consult the various sources of information listed in the previous section and
Appendix A. These documents were laboriously written for people like you — people
who need help with the Linux system. Even books written for Unix in general are
applicable to Linux, and you should take advantage of them. Impossible as it might
seem, more than likely you will find the answer to your problems somewhere in this
documentation.

If you have access to the Web, Usenet news, or any of the Linux-related mailing lists,
be sure to actually read the information there before posting for help with your
problem. Many times, solutions to common problems are not easy to find in
documentation and are instead well-covered in the newsgroups and mailing lists
devoted to Linux. If you only post to these groups and don't actually read them, you
are asking for trouble.

e Use the search engines! It's amazing how much Linux-specific information you can
turn up simply by using popular web search engines. In fact, Google even has an entire
search engine devoted just to Linux, at http://www.google.con/linux. The Google
usenet newsgroup archive (http://groups.google.com/) is also a good place to start.
Instead of hunting for information by surfing the many Linux web sites, HOWTO
guides, and mailing list archives, a few pointed queries to your favorite search engine
can usually turn up results much more quickly.

Of course, you should learn how to use search engines effectively: a generic query like
"Linux help" isn't likely to turn up exactly what you're looking for. On the other hand,
"Linux Sony Vaio CD-ROM" is a much better way to go (assuming, of course, you're
looking for help on your Vaio CD-ROM!).

e Learn to appreciate self-maintenance. In most cases, it's preferable to do as much
independent research and investigation into the problem as possible before seeking
outside help. Remember that Linux is about hacking and fixing problems yourself. It's
not a commercial operating system, nor does it try to look like one. Hacking won't kill
you. In fact, it will teach you a great deal about the system to investigate and solve
problems yourself — maybe even enough to one day call yourself a Linux guru. Learn
to appreciate the value of hacking the system and fixing problems yourself. You can't
expect to run a complete, home-brew Linux system without some degree of
handiwork.

e Remain calm. It's vital to refrain from getting frustrated with the system. Nothing is
earned by taking an axe — or worse, a powerful electromagnet — to your Linux
system in a fit of anger. The authors have found that a large punching bag or similar
inanimate object is a wonderful way to relieve the occasional stress attack. As Linux
matures and distributions become more reliable, we hope that this problem will go

38

Chapter 1. Introduction to Linux

away. However, even commercial Unix implementations can be tricky at times. When
all else fails, sit back, take a few deep breaths, and go after the problem again when
you feel relaxed. Your mind will be clearer, and your system will thank you.
Remember our Zen advice from the preface!

Refrain from posting spuriously. Many people make the mistake of posting to
Usenet or mailing messages pleading for help prematurely. When encountering a
problem, do not — we repeat, do not — rush immediately to your nearest terminal and
post a message to one of the Linux Usenet newsgroups. Often, you will catch your
own mistake five minutes later and find yourself in the curious situation of defending
your own sanity in a public forum. Before posting anything to any of the Linux
mailing lists or newsgroups, first attempt to resolve the problem yourself and be
absolutely certain what the problem is. Does your system not respond when you turn it
on? Perhaps the machine is unplugged.

If you do post for help, make it worthwhile. If all else fails, you may wish to post a
message for help in any of the number of electronic forums dedicated to Linux, such
as Usenet newsgroups and mailing lists. When posting, remember that the people
reading your post are not there to help you. The network is not your personal
consulting service. Therefore, it's important to remain as polite, terse, and informative
as possible.

How can one accomplish this? First, you should include as much (relevant)
information about your system and your problem as possible. Posting the simple
request "I can't seem to get email to work" will probably get you nowhere unless you
include information on your system, what software you are using, what you have
attempted to do so far, and what the results were. When including technical
information, it's usually a good idea to include general information on the version(s) of
your software (Linux kernel version, for example), as well as a brief summary of your
hardware configuration. However, don't overdo it — including information on the
brand and type of monitor that you have is probably irrelevant if you're trying to
configure networking software.

Second, remember that you need to make some attempt — however feeble — at
solving your problem before you go to the Net. If you have never attempted to set up
electronic mail, for instance, and first decide to ask folks on the Net how to go about
doing it, you are making a big mistake. A number of documents are available (see the
previous section Section 1.8) on how to get started with many common tasks under
Linux. The idea is to get as far along as possible on your own and then ask for help if
and when you get stuck.

Also remember that the people reading your message, however helpful, may
occasionally get frustrated by seeing the same problem over and over again. Be sure to
actually read the Linux HOWTOs, FAQs, newsgroups, and mailing lists before
posting your problems. Many times, the solution to your problem has been discussed
repeatedly, and all that's required to find it is to browse the current messages.

Third, when posting to electronic newsgroups and mailing lists, try to be as polite as
possible. It's much more effective and worthwhile to be polite, direct, and informative
— more people will be willing to help you if you master a humble tone. To be sure,
the flame war is an art form across many forms of electronic communication, but don't
allow that to preoccupy your and other people's time. The network is an excellent way

39

Chapter 1. Introduction to Linux

to get help with your Linux problems — but it's important to know how to use
the network effectively.

40

Chapter 2. Preparing to Install Linux

Chapter 2. Preparing to Install Linux

This chapter represents your first step in installing Linux. We'll describe how to obtain the
Linux software, in the form of one of the various prepackaged distributions, and how to
prepare your system. We'll include ways to partition disks so that Linux can coexist with
Windows, or another operating system.

As we have mentioned, there is no single "official" distribution of the Linux software; there
are, in fact, many distributions, each serving a particular purpose and set of goals. These
distributions are available via anonymous FTP from the Internet and via mail on CD-ROM
and DVD, as well as in retail stores.

2.1 Distributions of Linux

Because Linux is free software, no single organization or entity is responsible for releasing
and distributing the software. Therefore, anyone is free to put together and distribute the
Linux software, as long as the restrictions in the GPL are observed. The upshot of this is that
there are many distributions of Linux, available via anonymous FTP or mail order.

You are now faced with the task of deciding on a particular distribution of Linux that suits
your needs. Not all distributions are alike. Many of them come with just about all the software
you'd need to run a complete system — and then some. Other Linux distributions are "small"
distributions intended for users without copious amounts of disk space.

You might also want to consider that distributions have different target groups. Some are
meant more for businesses, others more for the home user. Some put more emphasis on server
use, others on desktop use.

The Linux Distribution HOWTO contains a list of Linux distributions available via the
Internet as well as mail order.

How can you decide among all these distributions? If you have access to Usenet news, or
another computer conferencing system, you might want to ask there for opinions from people
who have installed Linux. Even better, if you know someone who has installed Linux, ask
him for help and advice. In actuality, most of the popular Linux distributions contain roughly
the same set of software, so the distribution you select is more or less arbitrary.

2.1.1 Getting Linux via Mail Order or Other Hard Media

If you don't have Internet access, you can get many Linux distributions via mail order CD-
ROM or DVD. Many distributors accept credit cards as well as international orders, so no
matter where you live, you should be able to obtain Linux in this way.

Linux is free software, but distributors are allowed by the GPL to charge a fee for it.
Therefore, ordering Linux via mail order might cost you between U.S. $5 and U.S. $150,
depending on the distribution. However, if you know people who have already purchased or
downloaded a release of Linux, you are free to borrow or copy their software for your own
use. Linux distributors are not allowed to restrict the license or redistribution of the software
in any way. If you are thinking about installing an entire lab of machines with Linux, for

41

Chapter 2. Preparing to Install Linux

example, you need to purchase only a single copy of one of the distributions, which can be
used to install all the machines. There is one exception to this rule, though: in order to add
value to their distribution, some vendors include commercial packages that you might not be
allowed to install on several machines. If this is the case, it should be explicitly stated on the
package.

Many Linux user groups offer their own distributions; see if there's a user group near you. For
special platforms like Alpha, a user group may be an excellent place to get Linux.

2.1.2 Getting Linux from the Internet

If you have access to the Internet, the easiest way to obtain Linux is via anonymous FTP.'
One major FTP site is ftp://ftp.ibiblio.org, and the various Linux distributions can be found
there in the directory /pub/Linux/distributions.

When downloading the Linux software, be sure to use binary mode for all file transfers (with
most FTP clients, the command binary enables this mode).

You might run into a minor problem when trying to download files for one system (like
Linux) with another system (like Windows), because the systems are not always prepared to
handle each other's files sensibly. However, with the hints given in this chapter, you should be
able to complete the installation process nevertheless.

Some distributions are released via anonymous FTP as a set of disk images. That is, the
distribution consists of a set of files, and each file contains the binary image of a floppy. In
order to copy the contents of the image file onto the floppy, you can use the RAWRITE.EXE
program under Windows. This program copies, block for block, the contents of a file to a
floppy, without regard for disk format. RAWRITE.EXE is available on the various Linux FTP
sites, including ftp://ftp.ibiblio.org in the directory /pub/Linux/system/Install/rawwrite.

Be forewarned that this is a labor-intensive way of installing Linux: the distribution can easily
come to more than 50 floppies.

To proceed, download the set of floppy images and use RAWRITE.EXE with each image in
turn to create a set of floppies. Boot from the so-called "boot floppy," and you're ready to roll.
The software is usually installed directly from the floppies, although some distributions allow
you to install from a Windows partition on your hard drive, while others allow you to install
over a TCP/IP network. The documentation for each distribution should describe these
installation methods if they are available.

Other Linux distributions are installed from a set of MS-DOS-formatted floppies. For
example, the Slackware distribution of Linux requires RAWRITE.EXE only for the boot and
root floppies. The rest of the floppies are copied to MS-DOS-formatted floppies using the
MS-DOS COPY command. The system installs the software directly from the MS-DOS
floppies. This saves you the trouble of having to use RAWRITE.EXE for many image files,
although it requires you to have access to an MS-DOS system to create the floppies.

" If you do not have direct Internet access, you can obtain Linux via the FTPMAIL service, provided that you
have the ability to exchange email with the Internet.

42

Chapter 2. Preparing to Install Linux

If you have access to a Unix workstation with a floppy drive, you can also use the dd
command to copy the file image directly to the floppy. A command such as
dd of=/dev/rfd0 if=foo bs=18k will "raw write" the contents of the file foo to the
floppy device on a Sun workstation. Consult your local Unix gurus for more information on
your system's floppy devices and the use of dd.

Each distribution of Linux available via anonymous FTP should include a README file
describing how to download and prepare the floppies for installation. Be sure to read all
available documentation for the release you are using.

Today, some of the bigger Linux distributions are also distributed as one or a few ISO images
that you can burn on a CD-ROM or DVD. Downloading these is feasible only for people with
big hard-disks and a broadband connection to the Internet, due to the enormous amounts of
data involved.

2.2 Preparing to Install Linux

After you have obtained a distribution of Linux, you're ready to prepare your system for
installation. This takes a certain degree of planning, especially if you're already running other
operating systems. In the following sections, we'll describe how to plan for the Linux
installation.

2.2.1 Installation Overview

While each release of Linux is different, in general the method used to install the software is
as follows:

1. Repartition your hard drive(s). If you have other operating systems already installed,
you will need to repartition the drives in order to allocate space for Linux. This is
discussed in Section 2.2.4 later in this chapter. In some distributions, this step is
integrated into the installation procedure. Check the documentation of your
distribution to see whether this is the case. Still, it won't hurt you to follow the steps
given here and repartition your hard drive in advance.

2. Boot the Linux installation media. Each distribution of Linux has some kind of
installation media — usually a "boot floppy" or a bootable CD-ROM — that is used to
install the software. Booting this media will either present you with some kind of
installation program, which will step you through the Linux installation, or allow you
to install the software by hand.

3. Create Linux partitions. After repartitioning to allocate space for Linux, you create
Linux partitions on that empty space. This is accomplished with the Linux fdisk
program, covered in Section 3.1.3 in Chapter 3, or with some other distribution-
specific program, such as the Disk Druid, that comes with Red Hat Linux.

4. Create filesystems and swap space. At this point, you will create one or more
filesystems, used to store files, on the newly created partitions. In addition, if you plan
to use swap space (which you should, unless you have really huge amounts of physical
memory, or RAM), you will create the swap space on one of your Linux partitions.
This is covered in the sections Section 3.1.4 and Section 3.1.3, both in Chapter 3.

5. Install the software on the new filesystems. Finally, you will install the Linux software
on your newly created filesystems. After this, if all goes well, it's smooth sailing. This

43

Chapter 2. Preparing to Install Linux

is covered in Section 3.1.6 in Chapter 3. Later, in Section 3.3, also in Chapter 3, we
describe what to do if anything goes wrong.

People who want to switch back and forth between different operating systems sometimes
wonder which to install first: Linux or the other system? We can testify that some people have
had trouble installing Windows 95/98/ME after Linux. Windows 95/98/ME tends to wipe out
existing boot information when it's installed, so you're safer installing it first and then
installing Linux afterward using the information in this chapter. Windows NT/2000 seems to
be more tolerant of existing boot information. We would assume that this is the same for
Windows XP, being an evolution of Windows 2000, but we don't have any personal
experiences (no pun intended) with this yet.

Many distributions of Linux provide an installation program that will step you through the
installation process and automate one or more of the previous steps for you. Keep in mind
throughout this chapter and the next that any number of the previous steps may be automated
for you, depending on the distribution.

- While preparing to install Linux, the best advice we can give is to take
43] | notes during the entire procedure. Write down everything you do,
"3 | everything you type, and everything you see that might be out of the

ordinary. The idea here is simple: if (or when!) you run into trouble, you
want to be able to retrace your steps and find out what went wrong.
Installing Linux isn't difficult, but there are many details to remember.
You want to have a record of all these details so that you can
experiment with other methods if something goes wrong. Also, keeping
a notebook of your Linux installation experience is useful when you
want to ask other people for help — for example, when posting a
message to one of the Linux-related Usenet groups. Your notebook is
also something you'll want to show to your grandchildren someday.”

2.2.2 Repartitioning Concepts

In general, hard drives are divided into partitions, with one or more partitions devoted to an
operating system. For example, on one hard drive you may have several separate partitions —
one devoted to, say, Windows, another to OS/2, and another two to Linux.

If you already have other software installed on your system, you may need to resize those
partitions in order to free up space for Linux. You will then create one or more Linux
partitions on the resulting free space for storing the Linux software and swap space. We call
this process repartitioning.

Many Windows systems utilize a single partition inhabiting the entire drive. To Windows, this
partition is known as C:. If you have more than one partition, Windows names them D:, E:,
and so on. In a way, each partition acts like a separate hard drive.

% Matt shamefully admits that he kept a notebook of all his tribulations with Linux for the first few months of
working with the system. It is now gathering dust on his bookshelf.

44

Chapter 2. Preparing to Install Linux

On the first sector of the disk is a master boot record along with a partition table. The boot
record (as the name implies) is used to boot the system. The partition table contains
information about the locations and sizes of your partitions.

There are three kinds of partitions: primary, extended, and logical. Of these, primary
partitions are used most often. However, because of a limit on the size of the partition table,
you can have only four primary partitions on any given drive. This is due to the poor design of
MS-DOS and Windows; even other operating systems that originated in the same era do not
have such limits.

The way around this four-partition limit is to use an extended partition. An extended partition
doesn't hold any data by itself; instead, it acts as a "container" for logical partitions.
Therefore, you could create one extended partition, covering the entire drive, and within it
create many logical partitions. However, you are limited to only one extended partition per
drive.

2.2.3 Linux Partition Requirements

Before we explain how to repartition your drives, you need an idea of how much space you
will be allocating for Linux. We will be discussing how to create these partitions later, in
Section 3.1.3 in Chapter 3.

On Unix systems, files are stored on a filesystem, which is essentially a section of the hard
drive (or other medium, such as CD-ROM or floppy) formatted to hold files. Each filesystem
is associated with a specific part of the directory tree; for example, on many systems, there is
a filesystem for all the files in the directory /usr, another for /tmp, and so on. The root
filesystem is the primary filesystem, which corresponds to the topmost directory, /.

Under Linux, each filesystem lives on a separate partition on the hard drive. For instance, if
you have a filesystem for / and another for /usr, you will need two partitions to hold the two
filesystems.

Before you install Linux, you will need to prepare filesystems for storing the Linux software.
You must have at least one filesystem (the root filesystem), and therefore one partition,
allocated to Linux. Many Linux users opt to store all their files on the root filesystem, which,
in most cases, is easier to manage than several filesystems and partitions.

However, you may create multiple filesystems for Linux if you wish — for example, you may
want to use separate filesystems for /usr and /home. Those readers with Unix system
administration experience will know how to use multiple filesystems creatively. In
Section 6.1.4 in Chapter 6, we discuss the use of multiple partitions and filesystems.

Why use more than one filesystem? The most commonly stated reason is safety; if, for some
reason, one of your filesystems is damaged, the others will (usually) be unharmed. On the
other hand, if you store all your files on the root filesystem, and for some reason the
filesystem is damaged, you may lose all your files in one fell swoop. This is, however, rather
uncommon; if you back up the system regularly, you should be quite safe.

On the other hand, using several filesystems has the advantage that you can easily upgrade
your system without endangering your own precious data. You might have a partition for the

45

Chapter 2. Preparing to Install Linux

users' home directories, and when upgrading the system, you leave this partition alone, wipe
out the others, and reinstall Linux from scratch. Of course, nowadays distributions all have
quite elaborate update procedures, but from time to time, you might want a "fresh start."

Another reason to use multiple filesystems is to divvy up storage among multiple hard drives.
If you have, say, 100 MB free on one hard drive, and 2 GB free on another, you might want to
create a 100-MB root filesystem on the first drive and a 2-GB /usr filesystem on the other. It
is possible to have a single filesystem span multiple drives by using a tool called Logical
Volume Manager (LVM), but setting this up requires considerable knowledge, unless your
distribution's installation program automates it for you.

In summary, Linux requires at least one partition, for the root filesystem. If you wish to create
multiple filesystems, you need a separate partition for each additional filesystem. Some
distributions of Linux automatically create partitions and filesystems for you, so you may not
need to worry about these issues at all.

Another issue to consider when planning your partitions is swap space. Swap space is a
portion of the disk used by an operating system to temporarily store parts of programs that
were loaded by the user but aren't currently in use. You are not required to use swap space
with Linux, but if you have less than 64 MB of physical RAM, it is strongly suggested that
you do.

You have two options. The first is to use a swap file that exists on one of your Linux
filesystems. You will create the swap file for use as virtual RAM after you install the
software. The second option is to create a swap partition, an individual partition to be used
only as swap space. Most people use a swap partition instead of a swap file.

A single swap file or partition may be up to 2 GB.? If you wish to use more than 2 GB of
swap (hardly ever necessary), you can create multiple swap partitions or files — up to eight in
all.

Setting up a swap partition is covered in Section 3.1.4 in Chapter 3, and setting up a swap file
in Section 6.2 in Chapter 6.

Therefore, in general, you will create at least two partitions for Linux: one for use as the root
filesystem, and the other for use as swap space. There are, of course, many variations on
partitioning, but this is the minimal setup.

Of course, you need to know how much space these partitions will require. The size of your
Linux filesystems (containing the software itself) depends greatly on how much software
you're installing and what distribution of Linux you are using. Hopefully, the documentation
that came with your distribution will give you an approximation of the space requirements. A
small Linux system can use 60 MB or less; a larger system anywhere from 500 MB to 2 GB,
perhaps even more. Keep in mind that in addition to the space required by the software itself,
you need to allocate extra space for user directories, room for future expansion, and so forth.

If you use several partitions, you can use a rather small partition for the root directory. A
partition of 128 MB should suffice. Use at least 30 to 50 MB more if you keep /~var on the

? This value applies to machines with Intel processors. On other architectures it can be both higher and lower.

46

Chapter 2. Preparing to Install Linux

same partition, as most people do. On the other hand, you will probably want to have a largish
/usr partition.

The size of your swap partition (should you elect to use one) depends on how much virtual
RAM you require. A rule of thumb is to use a swap partition that measures twice the space of
your physical RAM; for example, if you have 64 MB of physical RAM, a 128-MB swap
partition should suffice. Of course, this is mere speculation; the actual amount of swap space
you require depends on the software you will be running. If you have a great deal of physical
RAM (say, 256 MB or more), you may not wish to use swap space at all.

Because of BIOS limitations, it is sometimes impossible to boot from partitions using
cylinders numbered over 1023. Therefore, when setting aside space for Linux, keep in mind
you may not want to use a partition in the over-1023 cylinder range for your Linux root
filesystem. Linux can still use partitions with cylinders numbered over 1023, but you may not
be able to boot Linux from such a partition. This advice may seem premature, but it is
important to know when planning your drive layout, and today, many people have large disks
with more than 1023 cylinders. There are also some newer tools that let you get around this
restriction, but we would still advise against using these unless absolutely necessary.

If you must use a partition with cylinders numbered over 1023 for your Linux root filesystem,
and other options do not work, you can always boot Linux from a floppy. This is not so bad,
actually; it takes only a few seconds longer to boot from a floppy than from the hard drive.

2.2.4 Repartitioning Your Drives

In this section, we'll describe how to resize your current partitions (if any) to make space for
Linux. If you are installing Linux on a "clean" hard drive, skip this section and proceed to
Section 3.1.

The usual way to resize an existing partition is to delete it (thus destroying all data on that
partition) and re-create it. Before repartitioning your drives, back up your system. After
resizing the partitions, you can reinstall your original software from the backup. However,
several programs are available for Windows that resize partitions nondestructively. One of
these is known as FIPS and can be found on many Linux FTP sites.

Also, keep in mind that because you'll be shrinking your original partitions, you may not have
space to reinstall everything. In this case, you need to delete enough unwanted software to
allow the rest to fit on the smaller partitions.

The program used to create and assign partitions is known as fdisk. Each operating system has
its own analog of this program; for example, under Windows, it is invoked with the FDISK
command. You should consult your documentation for whatever operating systems you are
currently running for information on repartitioning. Here, we'll discuss how to resize
partitions for Windows using fdisk, but this information should be easily extrapolated to other
operating systems.

The fdisk program (on any operating system) is responsible for reading the partition table on a
given drive and manipulating it to add or delete partitions. However, some versions of fdisk
do more than this, such as adding information to the beginning of a new partition to make it
usable by a certain operating system. For this reason, you should usually only create partitions

47

Chapter 2. Preparing to Install Linux

for an operating system with the version of fdisk that comes with it. You can't create Windows
partitions with Linux fdisk; partitions created in this way can't be used correctly by Windows.
(Actually, if you really know what you are doing, you might be lucky in creating Windows
partitions from Linux, but we would not advise doing so.) Similarly, Windows fdisk may not
be able to recognize Linux partitions. As long as you have a version of fdisk for each
operating system you use, you should be fine. (Note that not all systems name this program
[disk; some refer to it as a "disk manager" or "volume manager.")

Later, in Section 3.1.3 in Chapter 3, we describe how to create new Linux partitions, but for
now we are concerned with resizing your current ones.

, Consult the documentation for your current operating systems before

— repartitioning your drive. This section is meant to be a general overview
of the process; there are many subtleties we do not cover here. You can
lose all the software on your system if you do not repartition the drive
correctly.

Let's say that you have a single hard drive on your system, currently devoted entirely to
Windows. Hence, your drive consists of a single Windows partition, commonly known as C:.
Because this repartitioning method will destroy the data on that partition, you need to create a
bootable Windows "system disk," which contains everything necessary to run fdisk and
restore the software from backup after the repartitioning is complete.

In many cases, you can use the Windows installation disks for this purpose. However, if you
need to create your own system disk, format a floppy with the command:

FORMAT /s A:

Copy onto this floppy all necessary Windows utilities (usually most of the software in the
directory \DOS on your drive), as well as the programs FORMAT.COM and FDISK.EXE. You
should now be able to boot this floppy and run the command:

FDISK C:
to start up fdisk.

Use of fdisk should be self-explanatory, but consult the Windows documentation for details.
When you start fdisk, use the menu option to display the partition table, and write down the
information displayed there. It is important to keep a record of your original setup in case you
want to back out of the Linux installation.

To delete an existing partition, choose the FDISK menu option "Delete an MS-DOS
Partition or Logical DOS Drive." Specify the type of partition you wish to delete
(primary, extended, or logical) and the number of the partition. Verify all the warnings. Poof!

To create a new (smaller) partition for Windows, choose the FDISK option "Create an
MS-DOS Partition or Logical DOS Drive." Specify the type of partition (primary,
extended, or logical) and the size of the partition to create (specified in megabytes). fdisk
should create the partition, and you're ready to roll.

Chapter 2. Preparing to Install Linux

After you're done using fdisk, exit the program and reformat any new partitions. For example,
if you resized the first DOS partition on your drive (C:), you should run the command:

FORMAT /s C:

You may now reinstall your original software from backup.

49

Chapter 3. Installation and Initial Configuration

Chapter 3. Installation and Initial Configuration

At this point, you should have your Linux distribution and have disk space set aside for
Linux. In this chapter, we present a general overview of the installation process. Each
distribution has its own installation instructions, but armed with the concepts presented here,
you should be able to feel your way through any installation. Appendix A, lists sources of
information for installation instructions and other help, if you're at a total loss.

Different Linux distributions store files in different locations, which can make it hard to
describe how to administer Linux. For instance, the same files may be found on Red Hat,
SuSE, and Debian systems, but they may be under the /efc directory on one system and the
/sbin directory on another. Gradually, the vendors are standardizing the set of locations listed
in a document called the Filesystem Hierarchy Standard, but in this book we'll just try to deal
with lagging discrepancies by listing the locations of the most important files in the version of
each major distribution that we checked.

3.1 Installing the Linux Software

After resizing your existing partitions to make space for Linux, you are ready to install
the software. Here is a brief overview of the procedure:

1. Boot the Linux installation medium.

. Run fdisk under Linux to create Linux partitions.

3. Run mke2fs and mkswap to create Linux filesystems and swap space. (You may need
to use a different command than mke2fs if you want to install a different filesystem;
available filesystems are listed in Section 6.1.1.)

4. Install the Linux software and configure it.

5. Finally, either install the LILO bootloader on your hard drive, or create a boot floppy
in order to boot your new Linux system.

As we have said, most of these steps are likely to be automated for you by the installation
procedure (or at least integrated into it), depending on the distribution of Linux you are using.
Please consult your distribution's documentation for specific instructions.

3.1.1 Booting Linux

The first step is to boot the Linux installation medium. In most cases, this is either a boot
floppy, which contains a small Linux system, or a bootable CD-ROM. Upon booting the
floppy or the CD-ROM, you are presented with an installation menu of some kind that leads
you through the steps of installing the software. On other distributions, you are presented with
a login prompt when booting this floppy. Here, you usually log in as root or install to
begin the installation process.

The documentation that comes with your particular distribution will explain what is necessary
to boot Linux from the installation medium.

Most distributions of Linux use a boot floppy that allows you to enter hardware parameters at

a boot prompt to force hardware detection of various devices. For example, if your SCSI
controller is not detected when booting the floppy, you will need to reboot and specify the

50

Chapter 3. Installation and Initial Configuration

hardware parameters (such as I/O address and IRQ) at the boot prompt. Likewise, IBM PS/1,
older ThinkPad, and ValuePoint machines do not store drive geometry in the CMOS (the
battery-backed up memory that stores vital information while your computer is turned off), so
you must specify it at boot time.

The boot prompt is often displayed automatically when booting the boot floppy or CD-ROM.
This is the case for the Red Hat distribution. With distributions that do not show the prompt
by default, you need to hold down the Shift or Control key or press the Scroll Lock key while
booting the floppy or CD-ROM if you want to enter something at the boot prompt. If
successful, you should see the prompt:

boot:

and possibly other messages. What you are seeing here is a boot prompt presented by LILO
(the LInux LOader), a program used to boot the Linux operating system and specify
hardware-detection parameters at boot time. After you have installed Linux, you may wish to
install LILO on your hard drive, which allows you to select between Linux and other
operating systems (such as Windows) when the system is booted.

At this point you have several options. You can press the Enter key to simply boot Linux from
the floppy with no special parameters. (You should try this first, and if installation seems to
go well, you're all set. If all you have in terms of storage media is an IDE hard drive and CD-
ROM, chances are high that you won't have to specify anything.) You can also wait until the
installation proceeds. Because today's distributions set a timeout, the installation will only
wait for a fixed time for you to enter something and then just continue booting. Thus, if you
are unsure what to type, just type any key (like the space key), which will cancel the timeout
and give you all the time you want.

If you cannot boot Linux properly without specifying parameters, you may have to specify
hardware-detection parameters at this boot prompt, to force the system to properly identify the
hardware installed in your system. But in general, the rule is: use the defaults first and see
whether that works. Only if it doesn't, should you start to fiddle with the settings. Chances are
you will never have to do this, however.

If you don't want to try any hardware-detection parameters now, just press Enter at the boot
prompt. Watch the messages as the system boots. If you have an SCSI controller, for example,
you should see a listing of the SCSI hosts detected. If you see the message:

SCSI: 0 hosts

your SCSI controller was not detected, and you will have to use the hardware detection
procedure we'll describe in a moment.

Most new distributions often follow a different path of choosing hardware. They come with a
minimal kernel on the boot disk and then load so-called kernel modules from either a second
floppy disk or a CD-ROM. In this case, you will probably be dropped into some menu where
you can select additional modules to be probed. Even specifying modules is largely
automated: you just ask the installation program to probe for SCSI adapters and see whether
yours is found. The same goes for Ethernet cards and other devices that are needed for the
installation process. Devices that are not needed during the installation, such as sound boards,
are unlikely to be detected at this point of the installation. You will probably be given the

51

Chapter 3. Installation and Initial Configuration

option to configure them later. Again, try to swim with the stream and just accept the defaults
and see whether this works.

If the automated hardware detection procedures do not work for you (which normally is the
case only if you have very old, very new, or very unusual hardware), you will have to help
Linux a bit by forcing hardware detection.

To force hardware detection, you must enter the appropriate parameters at the boot prompt,
using the following syntax:

linux parameters

There are many such parameters, some of which are listed later in this section. We don't
expect you to understand what all these parameters mean or are used for; rather, you should
be able to determine which of these hardware options corresponds to your own system. We
are presenting a more comprehensive list here, in one place, as you may find them useful later
on.

For example, if you have an AHA152x-based SCSI controller, and you know that under
Windows you must configure the board for a particular I/O address and IRQ, you can use the
corresponding option (ahal52x=) here. In fact, many of these boot options are simply
unnecessary for initial installation.

One other piece of advice: write down and remember the boot options you use to get your
system running. After you have installed Linux, you'll need to use the same boot options in
order for your hardware to be properly detected each time you boot. If you install the LILO
loader on your hard drive, you can configure it to automatically use a certain set of boot
options so that you won't have to type them each time.

nosmp

Tells a kernel configured for symmetric multiprocessing (multiple CPUs) to work like
a single-processor kernel.

root=device
Specifies the device to use as the root filesystem when booting the system. For initial
installation this should not be used; after installation of the system you can use this to
override the default location of your Linux root filesystem.

ro
Mounts the root filesystem in a read-only state; used for system maintenance.

lock

Saves the boot parameters for the future so that you do not have to enter them each
time you boot the system.

52

Chapter 3. Installation and Initial Configuration

Irw
Mounts the root filesystem in a read-write state; used for system maintenance.
debug

Forces the kernel to print verbose debugging messages to the console as the system
runs.

ramdisk= kilobytes

Tells the system to reserve the given number of kilobytes for a ramdisk. This is often
used by installation boot floppies that load an entire filesystem image into memory.
You don't want to use this option for initial installation, but if you want to experiment
with ramdisks at a later date, this is the option to use.

mem= size

The system BIOS in most PCs only reports up to 64 MB of installed RAM; Linux uses
this information to determine the amount of installed memory. If you have more than
64 MB and use an older (pre-2.2) kernel, you may need to use this parameter to allow
the rest of your system memory to be used. The s i ze parameter can be a number with
k or M appended; for example, mem=96M would specify a system with 96 MB of RAM
installed. Note that if you tell the system it has more memory than is actually installed,
Bad Things will eventually happen.

hd= cylinders,heads,sectors

Specifies the hard drive geometry for IDE and standard ST-506 drives (not SCSI
drives). Required for systems such as the IBM PS/1, ValuePoint, and older ThinkPads.
For example, if your drive has 683 cylinders, 16 heads, and 32 sectors per track, use:

hd=683,16,32

This option can also be used as hda=, hdb=, hdc=, or hdd= to specify the geometry
for a particular IDE drive. Note that use of the hd= option may be necessary on some
older systems if you are using a large IDE drive (over 1024 cylinders). If Linux has
problems recognizing the geometry of your drive (you'll find out when you try to
partition the disk for Linux), try using this option.

max scsi luns= num

If num is 1, the system won't probe for SCSI devices that have a Logical Unit Number
(LUN) other than zero. This parameter is required for some poorly designed SCSI
devices that lock up when probed at non-zero LUNs. Note that this has nothing to do
with the SCSI device ID; LUNs allow the addressing of multiple logical units or
subdevices within a single SCSI device, such as a disk drive.

53

Chapter 3. Installation and Initial Configuration

ahalb2x= iobase,irqg,scsi-id, reconnect,parity

Specifies parameters for Adaptec AHA151x, AHA152x, AIC6260, AIC6230, and
SB16-SCSI interfaces. i obase must be specified in hexadecimal, as in 0x340. All
arguments except i obase are optional.

ahalb42= iobase
Specifies the 1/0 base (in hex) for Adaptec AHA154x SCSI interfaces.
alc7xxx= extended,no-reset

Specifies parameters for Adaptec AHA274x, AHA284x, and AIC7xxx SCSI
interfaces. A non-zero value for extended indicates that extended translation for
large disks is enabled. If no-reset is non-zero, the driver will not reset the SCSI bus
when configuring the adapter at boot time.

buslogic= iobase
Specifies the I/O base (in hex) for Buslogic SCSI interfaces.
tmc8xx= mem-base, irg

Specifies the base of the memory-mapped I/O region (in hex) and IRQ for Future
Domain TMC-8xx and TMC-950 SCSI interfaces.

paslé= iobase,irqg
Specifies the I/O base (in hex) and IRQ for Pro Audio Spectrum SCSI interfaces.
st0x= mem-base, irqg

Specifies the base of the memory-mapped I/O region (in hex) and IRQ for Seagate
ST-0x SCSI interfaces.

t128= mem-base,irqg

Specifies the base of the memory-mapped I/O region (in hex) and IRQ for Trantor
T128 SCSI interfaces.

aztcd= iobase
Specifies the 1/0 base (in hex) for Aztech CD-ROM interfaces.
cdu3la= iobase, irqg,pas
Specifies the I/0 base (in hex) and IRQ for CDU-31A and CDU-33A Sony CD-ROM

interfaces. These options are used on some Pro Audio Spectrum sound cards, as well
as boards from Sony. The i rg and pas parameters are optional. If the board does not

54

Chapter 3. Installation and Initial Configuration

support interrupts, i rq is 0 (as is the case with some boards). The only valid value for
the pas option is PAS, indicating that a Pro Audio Spectrum card is being used.

soncd535= iobase, irg

Specifies the I/O base (in hex) and IRQ (optional) for Sony CDU-535 interfaces.
gscd= iobase

Specifies I/O base (in hex) for GoldStar CD-ROM interfaces.
mcd= iobase,irqg

Specifies the I/O base (in hex) and IRQ (optional) for Mitsumi standard CD-ROM
interfaces.

optcd= iobase

Specifies the I/O base (in hex) for Optics Storage Interface CD-ROM interfaces.
cm206= iobase, irg

Specifies the I/O base (in hex) and IRQ for Philips CM206 CD-ROM interfaces.
sjcd= iobase,irqg,dma

Specifies the I/O base (in hex), IRQ, and Direct Memory Access (DMA) channel for
Sanyo CD-ROM interfaces. The i rg and dma parameters are optional.

sbpcd= iobase, type

Specifies the I/O base (in hex) for SoundBlaster Pro and compatible CD-ROM
interfaces. The type parameter must be SoundBlaster, LaserMate, or SPEA,
based on what type of board you have. Note that this option specifies parameters only
for the CD-ROM interface, not for the sound hardware on the board. This applies to
very old, pre-ATAPI CD-ROM drives, but most users do not need to be concerned
about this.

ether= irqg,iobase,parameters. ..
Specifies the IRQ and I/O base for Ethernet cards. If you are having problems
detecting your Ethernet card and wish to use it for installation (e.g., via FTP or NFS),
check out the Linux Ethernet HOWTO that describes the various boot options for
Ethernet cards in much detail. There are too many to detail here.

floppy=thinkpad

Tells the floppy driver that you have an older ThinkPad; necessary for floppy access
on older ThinkPad systems.

55

Chapter 3. Installation and Initial Configuration

floppy=0, thinkpad

Tells the floppy driver that you do not have a ThinkPad, in case it's confused.
bmouse= irg

Specifies IRQ for busmouse' interface.
msmouse= 1rqg

Specifies IRQ for Microsoft busmouse interface.

Quite a few other options are available; the previous options are generally necessary for
normal use of your system. (For example, we have left out the many parameters available for
sound card drivers; we urge you to read the appropriate HOWTO documents if you have a
life-threatening situation involving use of your sound card.)

For each of these, you must enter /inux followed by the parameters you wish to use.

If you have questions about these boot-time options, read the Linux Bootprompt HOWTO,
Linux SCSI HOWTO, and Linux CD-ROM HOWTO. These three documents should be
available on any Linux FTP site (as well as most Linux CD-ROMs) and describe the LILO
boot arguments in more detail.

3.1.2 Drives and Partitions Under Linux

Many distributions require you to create Linux partitions by hand using the fdisk program.
Others may automatically create partitions for you. Either way, you should know the
following information about Linux partitions and device names. (This information applies
only to Intel and Alpha systems booted from AlphaBIOS; other systems, such PowerPC,
SPARC, and m68k, do not have logical and extended partitions.)

Drives and partitions under Linux are given different names from their counterparts under
other operating systems. Under Windows, floppy drives are referred to as 2: and B:, while
hard-drive partitions are named C:, D:, and so on. Under Linux, the naming convention is
quite different.

Device drivers, found in the directory /dev, are used to communicate with devices on your
system (such as hard drives, mice, and so on). For example, if you have a mouse on your
system, you might access it through the driver /dev/mouse. Floppy drives, hard drives, and
individual partitions are all given individual device drivers of their own. Don't worry about
the device-driver interface for now; it is important only to understand how the various devices
are named in order to use them. Section 6.3 in Chapter 6 talks more about devices.

Table 3-1 lists the names of these various device drivers where multiple names can be created
with increasing numbers (0, 1, etc.). One or two are shown in the table as examples.

' A busmouse is a mouse attached to the system bus, instead of a serial port or a PS/2-style mouse port.

56

Chapter 3. Installation and Initial Configuration

Table 3-1. Linux partition names

Device Name
First floppy (A:) /dev/fd0)
Second floppy (B:) /dev/fdl
First hard drive (entire drive) or CD-ROM /dev/hda
First hard drive, primary partition 1 /dev/hdal
First hard drive, primary partition 2 /dev/hda?2
First hard drive, primary partition 3 /dev/hda3
First hard drive, primary partition 4 /dev/hda4
First hard drive, logical partition 1 /dev/hda5
First hard drive, logical partition 2 /dev/hda6
Second hard drive (entire drive) or CD-ROM /dev/hdb
Second hard drive, primary partition 1 /dev/hdb 1
First SCSI hard drive (entire drive) /dev/sda
First SCSI hard drive, primary partition 1 /dev/sdal
Second SCSI hard drive (entire drive) /dev/sdb
Second SCSI hard drive, primary partition 1 /dev/sdbl
First SCSI CD-ROM drive /dev/scd(
Second SCSI CD-ROM drive /dev/scdl
First generic SCSI device (such as scanners, CDR writers, etc.). Note that newer dev/
systems use numbers instead of letters (i.e., /dev/sg0 instead of /dev/sga). evsed
Second generic SCSI device /dev/sgb

A few notes about this table: /dev/fd0 corresponds to the first floppy drive (2: under
Windows), and /dev/fd1 corresponds to the second floppy (B:).

Also, SCSI hard drives are named differently from other drives. IDE, MFM, and RLL drives
are accessed through the devices /dev/hda, /dev/hdb, and so on. The individual partitions on
the drive /dev/hda are /dev/hdal, /dev/hda2, and so on. This also applies to ATAPI and IDE
CD-ROM drives. However, SCSI drives are named /dev/sda, /dev/sdb, and so on, with
partition names such as /dev/sdal and /dev/sda?.

Most systems, of course, do not have four primary partitions. But the names /dev/hdal
through /dev/hda4 are still reserved for these partitions; they cannot be used to name logical

partitions.

Here's an example. Let's say you have a single IDE hard drive, with three primary partitions.
The first two are set aside for Windows, and the third is an extended partition that contains

57

Chapter 3. Installation and Initial Configuration

two logical partitions, both for use by Linux. The devices referring to these partitions would
be:

Device Name

First Windows partition (C:) /dev/hdal
Second Windows partition (D:) /dev/hda?2
Extended partition /dev/hda3
First Linux logical partition /dev/hda5
Second Linux logical partition /dev/hda6

Note that /dev/hda4 is skipped; it corresponds to the fourth primary partition, which we don't
have in this example. Logical partitions are named consecutively starting with /dev/hda5.

3.1.3 Creating Linux Partitions

Now you are ready to create Linux partitions with the fdisk command. In general, you need to
create at least one partition for the Linux software itself and another partition for swap space.

Here we are describing the basic text-mode usage of fdisk, which should be available with all
distributions. Many distributions nowadays provide a more user-friendly interface to fdisk.
While those are usually not as flexible as plain fdisk, they can help you make the right choices
more easily. Whatever tool you use, this section is helpful for understanding the underlying
concepts. The tools all do more or less the same things in the end; some simply have more
sugar-coating than others. You can also make use of the information presented here for fixing
or checking something that you suspect didn't go right with the graphical tool.

After booting the installation medium, run fdisk by typing:

fdisk drive

where drive is the Linux device name of the drive to which you plan to add partitions (see
Table 3-1). For instance, if you want to run fdisk on the first SCSI disk in your system, use the
command:

fdisk /dev/sda
/dev/hda (the first IDE drive) is the default if you don't specify one.

If you are creating Linux partitions on more than one drive, run fdisk once for each drive:

fdisk /dev/hda

Command (m for help):

Here fdisk is waiting for a command; you can type m to get a list of options:

58

Chapter 3. Installation and Initial Configuration

Command (m for help): m

Command action

toggle a bootable flag

delete a partition

list known partition types
print this menu

add a new partition

print the partition table

quit without saving changes
change a partition's system id
change display/entry units
verify the partition table
write table to disk and exit
extra functionality (experts only)

X = < c QT B3 HQAY

Command (m for help):

The n command is used to create a new partition. Most other options you won't need to worry
about. To quit fdisk without saving any changes, use the ¢ command. To quit fdisk and write
the changes to the partition table to disk, use the w command. This is worth repeating: so long
as you quit with g without writing, you can mess around as much as you want with fdisk
without risking harm to your data. Only when you type w can you cause potential disaster to
your data if you do something wrong.

The first thing you should do is display your current partition table and write the information
down for later reference. Use the p command to see the information. It is a good idea to copy
the information to your notebook after each change you have made to the partition table. If,
for some reason, your partition table is damaged, you will not access any data on your hard
disk any longer, even though the data itself is still there. But by using your notes, you might
be able to restore the partition table and get your data back in many cases by running fdisk
again and deleting and re-creating the partitions with the parameters you previously wrote
down. Don't forget to save the restored partition table when you are done.

Here is an example of a printed partition table, where blocks, sectors, and cylinders are units
into which a hard disk is organized:

Command (m for help): p

Disk /dev/hda: 16 heads, 38 sectors, 683 cylinders
Units = cylinders of 608 * 512 bytes
Device Boot Begin Start End Blocks Id System
/dev/hdal * 1 1 203 61693 6 DOS 16-bit >=32M

Command (m for help):

In this example, we have a single Windows partition on /dev/hdal, which is 61693 blocks
(about 60 MB).? This partition starts at cylinder number 1 and ends on cylinder 203. We have
a total of 683 cylinders in this disk; so there are 480 cylinders left on which to create Linux
partitions.

To create a new partition, use the n command. In this example, we'll create two primary
partitions (/dev/hda?2 and /dev/hda3) for Linux:

2 A block, under Linux, is 1024 bytes.

59

Chapter 3. Installation and Initial Configuration

Command (m for help): n
Command action
e extended
P primary partition (1-4)
P

Here, fdisk is asking which type of the partition to create: extended or primary. In our
example, we're creating only primary partitions, so we choose p:

Partition number (1-4):

fdisk will then ask for the number of the partition to create; because partition 1 is already
used, our first Linux partition will be number 2:

Partition number (1-4): 2
First cylinder (204-683):

Now, we enter the starting cylinder number of the partition. Because cylinders 204 through
683 are unused, we'll use the first available one (numbered 204). There's no reason to leave
empty space between partitions:

First cylinder (204-683): 204
Last cylinder or +size or +sizeM or +sizeK (204-683):

fdisk is asking for the size of the partition we want to create. We can either specify an ending
cylinder number, or a size in bytes, kilobytes, or megabytes. Because we want our partition to
be 80 MB in size, we specify +80M. When specifying a partition size in this way, fdisk will
round the actual partition size to the nearest number of cylinders:

Last cylinder or +size or +sizeM or +sizeK (204-683): +80M

If you see a warning message such as this, it can be ignored. fdisk prints the warning because
it's an older program and dates back before the time that Linux partitions were allowed to be
larger than 64 MB.

Now we're ready to create our second Linux partition. For sake of demonstration, we'll create
it with a size of 10 MB:

Command (m for help): n
Command action

e extended

P primary partition (1-4)

P

Partition number (1-4): 3

First cylinder (474-683): 474

Last cylinder or +size or +sizeM or +sizeK (474-683): +10M

At last, we'll display the partition table. Again, write down all this information — especially
the block sizes of your new partitions. You'll need to know the sizes of the partitions when
creating filesystems. Also, verify that none of your partitions overlaps:

60

Chapter 3. Installation and Initial Configuration

Command (m for help): p

Disk /dev/hda: 16 heads, 38 sectors, 683 cylinders
Units = cylinders of 608 * 512 bytes

Device Boot Begin Start End Blocks Id System
/dev/hdal * 1 1 203 61693 6 DOS 16-bit >=32M
/dev/hda2 204 204 473 82080 83 Linux native
/dev/hda3 474 474 507 10336 83 Linux native

As you can see, /dev/hda? is now a partition of size 82080 blocks (which corresponds to about
80 MB), and /dev/hda3 is 10336 blocks (about 10 MB).

Note that most distributions require you to use the t command in fdisk to change the type of
the swap partition to "Linux swap," which is numbered 82. You can use the . command to
print a list of known partition type codes, and then use the t command to set the type of the
swap partition to that which corresponds to "Linux swap."

This way the installation software will be able to automatically find your swap partitions
based on type. If the installation software doesn't seem to recognize your swap partition, you
might want to rerun fdisk and use the t command on the partition in question.

In the previous example, the remaining cylinders on the disk (numbered 508 to 683) are
unused. You may wish to leave unused space on the disk, in case you want to create
additional partitions later.

Finally, we use the w command to write the changes to disk and exit fdisk:

Command (m for help): w

#

Keep in mind that none of the changes you make while running fdisk takes effect until you
give the w command, so you can toy with different configurations and save them when you're
done. Also, if you want to quit fdisk at any time without saving the changes, use the ¢
command. Remember that you shouldn't modify partitions for operating systems other than
Linux with the Linux fdisk program.

You may not be able to boot Linux from a partition using cylinders numbered over 1023.
Therefore, you should try to create your Linux root partition within the sub-1024 cylinder
range, which is almost always possible (e.g., by creating a small root partition in the sub-1024
cylinder range). If, for some reason, you cannot or do not want to do this, you can simply boot
Linux from floppy.

Some Linux distributions require you to reboot the system after running fdisk to allow the
changes to the partition table to take effect before installing the software. Newer versions of
fdisk automatically update the partition information in the kernel, so rebooting isn't necessary.
To be on the safe side, after running fdisk you should reboot from the installation medium
before proceeding.

61

Chapter 3. Installation and Initial Configuration

3.1.4 Creating Swap Space

If you are planning to use a swap partition for virtual RAM, you're ready to prepare it.> In
Section 6.2 in Chapter 6, we discuss the preparation of a swap file, in case you don't want to
use an individual partition.

Many distributions require you to create and activate swap space before installing the
software. If you have a small amount of physical RAM, the installation procedure may not be
successful unless you have some amount of swap space enabled.

The command used to prepare a swap partition is mkswap, and it takes the following form:
mkswap -c partition

where partition is the name of the swap partition. For example, if your swap partition is
/dev/hda3, use the command:

mkswap -c /dev/hda3

With older versions of mkswap, you had to specify the size of the partition, which was
dangerous, as one typo could destroy your disk logically.

The -c option tells mkswap to check for bad blocks on the partition when creating the swap
space. Bad blocks are spots on the magnetic medium that do not hold the data correctly. This
occurs only rarely with today's hard disks, but if it does occur, and you do not know about it,
it can cause you endless trouble. Always use the -c option to have mkswap check for bad
blocks. It will exclude them from being used automatically.

If you are using multiple swap partitions, you need to execute the appropriate mkswap
command for each partition.

After formatting the swap space, you need to enable it for use by the system. Usually, the
system automatically enables swap space at boot time. However, because you have not yet
installed the Linux software, you need to enable it by hand.

The command to enable swap space is swapon, and it takes the following form:

swapon partition

After the mkswap command shown, we use the following command to enable the swap space
on /dev/hda3:

swapon /dev/hda3

? Again, some distributions of Linux prepare the swap space for you automatically, or via an installation menu
option.

62

Chapter 3. Installation and Initial Configuration

3.1.5 Creating the Filesystems

Before you can use your Linux partitions to store files, you must create filesystems on them.
Creating a filesystem is analogous to formatting a partition under Windows or other operating
systems. We discussed filesystems briefly in Section 2.2.3 in Chapter 2.

Several types of filesystems are available for Linux. Each filesystem type has its own format
and set of characteristics (such as filename length, maximum file size, and so on). Linux also
supports several "third-party" filesystem types, such as the Windows filesystem.

The most commonly used filesystem type is the Second Extended Filesystem, or extlfs.
The ext2fs is one of the most efficient and flexible filesystems; it allows filenames of up to
256 characters and filesystem sizes of up to 32 terabytes. In Section 6.1.1 in Chapter 6, we
discuss the various filesystem types available for Linux. Initially, however, we suggest you
use the ext2fs filesystem.

To create an ext2fs filesystem, use the command:

mke2fs -c partition

where partition is the name of the partition. For example, to create a filesystem on
/dev/hda2, use the command:

mke2fs -c /dev/hda2

If you're using multiple filesystems for Linux, you need to use the appropriate mke2fs
command for each filesystem.

If you have encountered any problems at this point, see Section 3.3 later in this chapter.
3.1.6 Installing the Software

Finally, you are ready to install the software on your system. Every distribution has a different
mechanism for doing this. Many distributions have a self-contained program that steps you
through the installation. On other distributions, you have to mount your filesystems in a
certain subdirectory (such as /mnt) and copy the software to them by hand. On CD-ROM
distributions, you may be given the option to install a portion of the software on your hard
drive and leave most of the software on the CD-ROM. This is often called a "live filesystem."
Such a live filesystem is convenient for trying out Linux before you make a commitment to
install everything on your disk.

Some distributions offer several different ways to install the software. For example, you may
be able to install the software directly from a Windows partition on your hard drive instead of
from floppies. Or you may be able to install over a TCP/IP network via FTP or NFS. See your
distribution's documentation for details.

For example, the Slackware distribution requires you to do the following:

63

Chapter 3. Installation and Initial Configuration

Create partitions with fdisk.

Optionally create swap space with mkswap and swapon (if you have 16 MB or less of
RAM).

3. Run the setup program to install the software. setup leads you through a self-
explanatory menu system.

N —

The exact method used to install the Linux software differs greatly with each distribution.

You might be overwhelmed by the choice of software to install. Modern Linux distributions
can easily contain a thousand or more packages spread over several CD-ROMs. There are
basically three methods for selecting the software package:

Selection by task

This is the easiest means of selection for beginners. You don't have to think about
whether you need a certain package. You just pick whether your Linux computer
should act as a workstation, a development machine, or a network router, and the
installation program will pick the appropriate packages for you. In all cases, you can
then either refine the selection by hand or come back to the installation program later.

Selection of individual packages by series

With this selection mechanism, all the packages are grouped into series like
"Networking," "Development," or "Graphics." You can go through all the series and
pick the individual packages there. This requires more decisions than if you choose
selection by task, because you have to decide whether you need each package;
however, you can skip an entire series when you are sure that you are not interested in
the functions it offers.

Selection of individual packages sorted alphabetically

This method is useful only when you already know which packages you want to
install; otherwise you won't see the forest for the trees.

Choosing one selection method does not exclude the use of the others. Most distributions
offer two or more of the aforementioned selection mechanisms.

It might still be difficult to decide which package to pick. Good distributions show a short
description of each package on screen to make it easier for you to select the correct ones, but
if you are still unsure, our advice is this: when in doubt, leave it out! You can always go back
and add packages later.

Modern distributions have a very nifty feature, called dependency tracking. Some packages
work only when some other packages are installed (e.g., a graphics viewer might need special
graphics libraries to import files). With dependency tracking, the installation program can
inform you about those dependencies and will let you automatically select the package you
want along with all the ones it depends on. Unless you are very sure about what you are
doing, you should always accept this offer, or the package might not work afterward.

64

Chapter 3. Installation and Initial Configuration

Installation programs can help you make your selection and avoid mistakes in other ways. For
example, the installation program might refuse to start the installation when you deselect a
package that is absolutely crucial for even the most minimal system to boot (like the basic
directory structure). Or, it might check for mutual exclusions, such as cases in which you can
only have one package or the other, but not both.

Some distributions, such as SuSE, come with a large book that, among other things, lists all
the packages together with short descriptions. It might be a good idea to at least skim those
descriptions to see what's in store for you, or you might be surprised when you select the
packages and are offered the 25" text editor.

3.1.7 Creating the Boot Floppy or Installing LILO

Every distribution provides some means of booting your new Linux system after you have
installed the software. In many cases, the installation procedure suggests you create a boot
floppy, which contains a Linux kernel configured to use your newly created root filesystem.
In order to boot Linux, you could boot from this floppy; control is transferred to your hard
drive after you boot. On other distributions, this boot floppy is the installation floppy itself.

Many distributions give you the option of installing LILO on your hard drive. LILO is a
program that resides on your drive's master boot record. It boots a number of operating
systems, including Windows and Linux, and allows you to select to which boot at startup
time.

In order for LILO to be installed successfully, it needs to know a good deal of information
about your drive configuration: for example, which partitions contain which operating
systems, how to boot each operating system, and so on. Many distributions, when installing
LILO, attempt to "guess" at the appropriate parameters for your configuration. Occasionally,
the automated LILO installation provided by some distributions can fail and leave your master
boot record in shambles (however it's very doubtful that any damage to the actual data on
your hard drive will take place). In particular, if you use OS/2's Boot Manager, you should rnot
install LILO using the automated procedure; there are special instructions for using LILO
with the Boot Manager, which will be covered in Chapter 5.

In many cases, it is best to use a boot floppy until you have a chance to configure LILO
yourself, by hand. If you're exceptionally trusting, though, you can go ahead with the
automated LILO installation if it is provided with your distribution.

In Section 5.2.2 in Chapter 5, we'll cover in detail how to configure and install LILO for your
particular setup.

There are also other boot loaders besides LILO, including the Grand
Unified BootLoader (GRUB). Most distributions use LILO, though.

If everything goes well, congratulations! You have just installed Linux on your system. Go
have a cup of tea or something; you deserve it.

65

Chapter 3. Installation and Initial Configuration

In case you ran into trouble, Section 3.3, later in this chapter, describes the most common
sticking points for Linux installations, and how to get around them.

3.1.8 Additional Installation Procedures

Some distributions of Linux provide a number of additional installation procedures, allowing
you to configure various software packages, such as TCP/IP networking, the X Window
System, and so on. If you are provided with these configuration options during installation,
you may wish to read ahead in this book for more information on how to configure this
software. Otherwise, you should put off these installation procedures until you have a
complete understanding of how to configure the software.

It's up to you; if all else fails, just go with the flow and see what happens. It's doubtful that
anything you do incorrectly now cannot be undone in the future (knock on wood).

3.2 Post-Installation Procedures

After you have completed installing the Linux software, you should be able to reboot the
system, log in as root, and begin exploring the system. (Each distribution has a different
method for doing this; follow the instructions given by the distribution.)

Before you strike out on your own, however, there are some tasks you should do now that
may save you a lot of grief later. Some of these tasks are trivial if you have the right hardware
and Linux distribution; others may involve a little research on your part, and you may decide
to postpone them.

3.2.1 Creating a User Account

In order to start using your system, you need to create a user account for yourself. Eventually,
if you plan to have other users on your system, you'll create user accounts for them as well.
But before you begin to explore you need at least one account.

Why is this? Every Linux system has several preinstalled accounts, such as root. The root
account, however, is intended exclusively for administrative purposes. As root you have all
kinds of privileges and can access all files on your system.

However, using root can be dangerous, especially if you're new to Linux. Because there are
no restrictions on what root can do, it's all too easy to mistype a command, inadvertently
delete files, damage your filesystem, and so on. You should log in as root only when you
need to perform system administration tasks, such as fixing configuration files, installing new
software, and so on. See Section 5.1 in Chapter 5 for details.*

For normal usage, you should create a standard user account. Unix systems have built-in
security that prevents users from deleting other users' files and corrupting important
resources, such as system configuration files. As a regular user, you'll be protecting yourself
from your own mistakes. This is especially true for users who don't have Unix system
administration experience.

* A side note: on a Windows 95/98/ME system, the user is always the equivalent to a r 0Ot user, whether that
power is needed or not.

66

Chapter 3. Installation and Initial Configuration

Many Linux distributions provide tools for creating new accounts. These programs are usually
called useradd or adduser. As root, invoking one of these commands should present you
with a usage summary for the command, and creating a new account should be fairly
self-explanatory.

Most modern distributions provide a generic system administration tool for various tasks, one
of which is creating a new user account.

Again, other distributions, such as SuSE Linux, Red Hat Linux, or Caldera Open Linux,
integrate system installation and system administration in one tool — e.g., yast or yast2 on
SuSE Linux, and /isa on Caldera Open Linux.

If all else fails, you can create an account by hand. Usually, all that is required to create an
account is:

1. Edit the file /etc/passwd to add the new user. (Doing this with vipw — instead of
editing the file directly — will protect you against concurrent changes of the password
file, but vipw is not available on all distributions.)

2. Optionally edit the file /etc/shadow to specify "shadow password" attributes for the

new user.

Create the user's home directory.

4. Copy skeleton configuration files (such as .bashrc) to the new user's home directory.
These can sometimes be found in the directory /etc/skel.

98]

We don't want to go into great detail here: the particulars of creating a new user account can
be found in virtually every book on Unix system administration (see the Bibliography for
suggested reading). We also talk about creating users in Section 5.7 in Chapter 5. You should
be able to find a tool that takes care of these details for you.

Keep in mind that to set or change the password on the new account, you use the passwd
command. For example, to change the password for the user duck, issue the following
command:

passwd duck

This will prompt you to set or change the password for duck. If you execute the passwd
command as root, it will not prompt you for the original password. In this way, if you have
forgotten your old password, but can still log in as root, you can reset it.

3.2.2 Getting Online Help

Linux provides online help in the form of manual pages. Throughout this book, we'll be
directing you to look at the manual pages for particular commands to get more information.
Manual pages describe programs and applications on the system in detail, and it's important
for you to learn how to access this online documentation in case you get into a bind.

To get online help for a particular command, use the man command. For example, to get
information on the passwd command, type the following command:

$ man passwd

67

Chapter 3. Installation and Initial Configuration

This should present you with the manual page for passwd.

Usually, manual pages are provided as an optional package with most distributions, so they
won't be available unless you have opted to install them. However, we very strongly advise
you to install the manual pages. You will feel lost many times without them.

In addition, certain manual pages may be missing or incomplete on your system. It depends
on how complete your distribution is and how up-to-date the manual pages are.

Linux manual pages also document system calls, library functions, configuration file formats,
and kernel internals. In Section 4.12 in Chapter 4, we'll describe their use in more detail.

Besides traditional manual pages, there are also so-called Info pages. These can be read with
the text editor Emacs, the command info, or one of many graphical info readers available.

Many distributions also provide documentation in HTML format that you can read with any
web browser, such as Konqueror, as well as with Emacs.

Finally, there are documentation files that are simply plain text. You can read these with any
text editor or simply with the command more.

If you cannot find documentation for a certain command, you can also try running it with
either the -4 or - -help option. Most commands then provide a brief summary of their usage.

3.2.3 Editing /etc/fstab

In order to ensure that all your Linux filesystems will be available when you reboot the
system, you may need to edit the file /etc/fstab, which describes your filesystems. Many
distributions automatically generate the /etc/fstab file for you during installation, so all may
be well. However, if you have additional filesystems that were not used during the installation
process, you may need to add them to /etc/fstab in order to make them available. Swap
partitions should be included in /etc/fstab as well.

In order to access a filesystem, it must be mounted on your system. Mounting a filesystem
associates that filesystem with a particular directory. For example, the root filesystem is
mounted on /, the /usr filesystem on /usr, and so on. (If you did not create a separate
filesystem for /usr, all files under /usr will be stored on the root filesystem.)

We don't want to smother you with technical details here, but it is important to understand
how to make your filesystems available before exploring the system. For more details on
mounting filesystems, see Section 6.1.2 in Chapter 6, or any book on Unix system
administration.

The root filesystem is automatically mounted on / when you boot Linux. However, your other
filesystems must be mounted individually. Usually, this is accomplished with the command:

mount -av

in one of the system startup files in /etc/rc.d or wherever your distribution stores its
configuration files. This tells the mount command to mount any filesystems listed in the file

68

Chapter 3. Installation and Initial Configuration

/etc/fstab. Therefore, in order to have your filesystems mounted automatically at boot time,
you need to include them in /etc/fstab. (Of course, you could always mount the filesystems by
hand, using the mount command after booting, but this is unnecessary work.)

Here is a sample /etc/fstab file, shortened by omitting the last two parameters in each line,
which are optional and not relevant to the discussion here. In this example, the root filesystem
is on /dev/hdal, the /home filesystem is on /dev/hdb2, and the swap partition is on /dev/hdb1:

/etc/fstab

device directory type options
#

/dev/hdal / ext2 defaults
/dev/hdb2 /home ext2 defaults
/dev/hdbl none swap sw

/proc /proc proc defaults

The lines beginning with the "#" character are comments. Also, you'll notice an additional
entry for /proc. /proc is a "virtual filesystem" used to gather process information by
commands such as ps.

As you can see, /etc/fstab consists of a series of lines. The first field of each line is the device
name of the partition, such as /dev/hdal. The second field is the mount point — the directory
where the filesystem is mounted. The third field is the type; Linux ext2fs filesystems should
use ext2 for this field. swap should be used for swap partitions. The fourth field is for
mounting options. You should use defaults in this field for filesystems and sw for swap
partitions.

Using this example as a model, you should be able to add entries for any filesystems not
already listed in the /etc/fstab file.

How do we add entries to the file? The easiest way is to edit the file, as root, using an editor
such as vi or Emacs. We won't get into the use of text editors here. vi and Emacs are both
covered at the beginning of Chapter 9.

After editing the file, you'll need to issue the command:

/bin/mount -a
or reboot for the changes to take effect.

If you're stuck at this point, don't be alarmed. We suggest that Unix novices do some reading
on basic Unix usage and system administration. We offer a lot of introductory material in
upcoming chapters, and most of the remainder of this book is going to assume familiarity with
these basics, so don't say we didn't warn you.

3.2.4 Shutting Down the System

You should never reboot or shut down your Linux system by pressing the reset switch or
simply turning off the power. As with most Unix systems, Linux caches disk writes in
memory. Therefore, if you suddenly reboot the system without shutting down "cleanly," you
can corrupt the data on your drives. Note, however, that the "Vulcan nerve pinch" (pressing
Ctrl-Alt-Delete in unison) is generally safe: the kernel traps the key sequence and passes it to

69

Chapter 3. Installation and Initial Configuration

the init process, which, in turn, initiates a clean shutdown of the system (or whatever it is
configured to do in this case; see Section 5.3.2 in Chapter 5). Your system configuration
might reserve the Ctrl-Alt-Delete for the system administrator so that normal users cannot
shut down the network server that the whole department depends upon. To set permissions for
this keystroke combination, create a file called /etc/shutdown.allow that lists the names of all
the users who are allowed to shut down the machine.

The easiest way to shut down the system is with the shutdown command. As an example, to
shut down and reboot the system immediately, use the following command as root:

shutdown -r now

This will cleanly reboot your system. The manual page for shutdown describes the other
available command-line arguments. Instead of now, you can also specify when the system
should be shut down. Most distributions also provide Aalt, which calls shutdown now. Some
distributions also provide poweroff, which actually shuts down the computer and turns it off.
Whether it works depends on the hardware (which must support APM), not on Linux.

3.3 Running into Trouble

Almost everyone runs into some kind of snag or hang-up when attempting to install Linux the
first time. Most of the time, the problem is caused by a simple misunderstanding. Sometimes,
however, it can be something more serious, such as an oversight by one of the developers or a
bug.

This section will describe some of the most common installation problems and how to solve
them. It also describes unexpected error messages that can pop up during installations that
appear to be successful.

In general, the proper boot sequence is:

1. After booting from the LILO prompt, the system must load the kernel image from
floppy. This may take several seconds; you know things are going well if the floppy
drive light is still on.

2. While the kernel boots, SCSI devices must be probed for. If you have no SCSI devices
installed, the system will "hang" for up to 15 seconds while the SCSI probe continues;
this usually occurs after the line:

lp init: 1pl exists (0), using polling driver
appears on your screen.
3. After the kernel is finished booting, control is transferred to the system bootup files on

the floppy. Finally, you will be presented with a login prompt, or be dropped into an
installation program. If you are presented with a login prompt such as:

Linux login:

you should then log in (usually as root or install — this varies with each
distribution). After you enter the username, the system may pause for 20 seconds or

70

Chapter 3. Installation and Initial Configuration

more while the installation program or shell is being loaded from floppy. Again, the
floppy drive light should be on. Don't assume the system is hung.

3.3.1 Problems with Booting the Installation Medium

When attempting to boot the installation medium for the first time, you may encounter a
number of problems. Note that the following problems are not related to booting your newly
installed Linux system. See Section 3.3.4 for information on these kinds of pitfalls.

e Floppy or medium error occurs when attempting to boot. The most popular cause
for this kind of problem is a corrupt boot floppy. Either the floppy is physically
damaged, in which case you should re-create the disk with a brand-new floppy, or the
data on the floppy is bad, in which case you should verify that you downloaded and
transferred the data to the floppy correctly. In many cases, simply re-creating the boot
floppy will solve your problems. Retrace your steps and try again.

If you received your boot floppy from a mail-order vendor or some other distributor,
instead of downloading and creating it yourself, contact the distributor and ask for a
new boot floppy — but only after verifying that this is indeed the problem. This can,
of course, be difficult, but if you get funny noises from your floppy drive or messages
like cannot read sector or similar, chances are that your medium is damaged.

e System "hangs" during boot or after booting. After the installation medium boots,
you see a number of messages from the kernel itself, indicating which devices were
detected and configured. After this, you are usually presented with a login prompt,
allowing you to proceed with installation (some distributions instead drop you right
into an installation program of some kind). The system may appear to "hang" during
several of these steps. Be patient; loading software from floppy is very slow. In many
cases, the system has not hung at all, but is merely taking a long time. Verify that there
is no drive or system activity for at least several minutes before assuming that the
system is hung.

Each activity listed at the beginning of this section may cause a delay that makes you
think the system has stopped. However, it is possible that the system actually may
"hang" while booting, which can be due to several causes. First of all, you may not
have enough available RAM to boot the installation medium. (See the following item
for information on disabling the ramdisk to free up memory.)

Hardware incompatibility causes many system hangs. Even if your hardware is
supported, you may run into problems with incompatible hardware configurations that
are causing the system to hang. See Section 3.3.2, for a discussion of hardware
incompatibilities. Section 10.2 in Chapter 10 lists the currently supported video
chipsets, which are a major issue in running graphics on Linux.

e System reports out-of-memory errors while attempting to boot or install the
software. This problem relates to the amount of RAM you have available. Keep in
mind that Linux itself requires at least 4 MB of RAM to run at all; almost all current
distributions of Linux require 8§ MB or more. On systems with § MB of RAM or less,
you may run into trouble booting the installation medium or installing the software
itself. This is because many distributions use a ramdisk, which is a filesystem loaded

71

Chapter 3. Installation and Initial Configuration

directly into RAM, for operations while using the installation medium. The entire
image of the installation boot floppy, for example, may be loaded into a ramdisk,
which may require more than 1 MB of RAM.

The solution to this problem is to disable the ramdisk option when booting the install
medium. Each distribution has a different procedure for doing this. Please see your
distribution documentation for more information.

You may not see an out-of-memory error when attempting to boot or install the
software; instead, the system may unexpectedly hang or fail to boot. If your system
hangs, and none of the explanations in the previous section seems to be the cause, try
disabling the ramdisk.

e The system reports an error, such as '"Permission denied" or "File not found,"
while booting. This is an indication that your installation boot medium is corrupt. If
you attempt to boot from the installation medium (and you're sure you're doing
everything correctly), you should not see any such errors. Contact the distributor of
your Linux software and find out about the problem, and perhaps obtain another copy
of the boot medium if necessary. If you downloaded the boot disk yourself, try re-
creating the boot disk, and see if this solves your problem.

e The system reports the error "VFS: Unable to mount root" when booting. This
error message means that the root filesystem (found on the boot medium itself) could
not be found. This means that either your boot medium is corrupt or you are not
booting the system correctly.

For example, many CD-ROM distributions require you to have the CD-ROM in the
drive when booting. Also be sure that the CD-ROM drive is on, and check for any
activity. It's also possible the system is not locating your CD-ROM drive at boot time;
see Section 3.3.2, for more information.

If you're sure you are booting the system correctly, your boot medium may indeed be
corrupt. This is an uncommon problem, so try other solutions before attempting to use
another boot floppy or tape. One handy feature here is RedHat's new mediacheck
option on the CD-ROM. This will check if the CD is OK.

3.3.2 Hardware Problems

The most common problem encountered when attempting to install or use Linux is an
incompatibility with hardware. Even if all your hardware is supported by Linux, a
misconfiguration or hardware conflict can sometimes cause strange results: your devices may
not be detected at boot time, or the system may hang.

It is important to isolate these hardware problems if you suspect they may be the source of

your trouble. In the following sections, we describe some common hardware problems and
how to resolve them.

72

Chapter 3. Installation and Initial Configuration

3.3.2.1 Isolating hardware problems

If you experience a problem you believe is hardware-related, the first thing to do is attempt to
isolate the problem. This means eliminating all possible variables and (usually) taking the
system apart, piece by piece, until the offending piece of hardware is isolated.

This is not as frightening as it may sound. Basically, you should remove all nonessential
hardware from your system (after turning the power off), and then determine which device is
actually causing the trouble — possibly by reinserting each device, one at a time. This means
you should remove all hardware other than the floppy and video controllers, and, of course,
the keyboard. Even innocent-looking devices, such as mouse controllers, can wreak unknown
havoc on your peace of mind unless you consider them nonessential. So, to be sure, really
remove everything that you don't absolutely need for booting when experimenting, and add
the devices one by one later when reassembling the system.

For example, let's say the system hangs during the Ethernet board detection sequence at boot
time. You might hypothesize that there is a conflict or problem with the Ethernet board in
your machine. The quick and easy way to find out is to pull the Ethernet board and try booting
again. If everything goes well when you reboot, you know that either the Ethernet board is not
supported by Linux, or there is an address or IRQ conflict with the board. In addition, some
badly designed network boards (mostly ISA-based NE2000 clones, which are luckily dying
out by now) can hang the entire system when they are auto-probed. If this appears to be the
case for you, your best bet is to remove the network board from the system during the
installation and put it back in later, or pass the appropriate kernel parameters during boot-up
so that auto-probing of the network board can be avoided. The most permanent fix is to dump
that card and get a new one from another vendor that designs its hardware more carefully.

What does "Address or IRQ conflict?" mean, you may ask. All devices in your machine use
an interrupt request line, or IRQ, to tell the system they need something done on their behalf.
You can think of the IRQ as a cord the device tugs when it needs the system to take care of
some pending request. If more than one device is tugging on the same cord, the kernel won't
be able to determine which device it needs to service. Instant mayhem.

Therefore, be sure all your installed non-PCI devices are using unique IRQ lines. In general,
the IRQ for a device can be set by jumpers on the card; see the documentation for the
particular device for details. Some devices do not require an IRQ at all, but it is suggested you
configure them to use one if possible (the Seagate STO1 and ST02 SCSI controllers are good
examples). The PCI bus is more cleverly designed, and PCI devices can and do quite happily
share interrupt lines.

In some cases, the kernel provided on your installation medium is configured to use a certain
IRQ for certain devices. For example, on some distributions of Linux, the kernel is
preconfigured to use IRQ 5 for the TMC-950 SCSI controller, the Mitsumi CD-ROM
controller, and the busmouse driver. If you want to use two or more of these devices, you'll
need first to install Linux with only one of these devices enabled, then recompile the kernel in
order to change the default IRQ for one of them. (See Section 7.4 in Chapter 7 for information
on recompiling the kernel.)

Another area where hardware conflicts can arise is with DMA channels, I/O addresses, and
shared memory addresses. All these terms describe mechanisms through which the system

73

Chapter 3. Installation and Initial Configuration

interfaces with hardware devices. Some Ethernet boards, for example, use a shared memory
address as well as an IRQ to interface with the system. If any of these are in conflict with
other devices, the system may behave unexpectedly. You should be able to change the DMA
channel, I/O, or shared memory addresses for your various devices with jumper settings.
(Unfortunately, some devices don't allow you to change these settings.)

The documentation for your various hardware devices should specify the IRQ, DMA channel,
I/O address, or shared memory address the devices use, and how to configure them. Of
course, a problem here is that some of these settings are not known before the system is
assembled and may thus be undocumented. Again, the simple way to get around these
problems is to temporarily disable the conflicting devices until you have time to determine the
cause of the problem.

Table 3-2 is a list of IRQ and DMA channels used by various "standard" devices found on
most systems. Almost all systems have some of these devices, so you should avoid setting the
IRQ or DMA of other devices to these values.

Table 3-2. Common device settings

Device I/O address IRQ DMA
1tyS0 (COM1) 318 4 n/a
1tyS1 (COM2) 218 3 n/a
ttyS2 (COM3) 3e8 4 n/a
ttyS3 (COM4) 2e8 3 n/a
Ip0 (LPTI) 378 - 37f 7 n/a
Ipl (LPT2) 278 - 27 5 n/a
1d0, fd1 (floppies 1 and 2) 310 - 37 6 2
fd?2, fd3 (floppies 3 and 4) 370 - 377 10 3

3.3.2.2 Problems recognizing hard drive or controller

When Linux boots, you see a series of messages on your screen, such as the following:

Console: colour VGA+ 80x25
Floppy drive(s): fd0 is 1.44M
ttyS00 at 0x03f8 (irg = 4) is a 16550A

Here, the kernel is detecting the various hardware devices present on your system. At some
point, you should see the line:
Partition check:

followed by a list of recognized partitions, for example:

Partition check:
hda: hdal hda2
hdb: hdbl hdb2 hdb3

If, for some reason, your drives or partitions are not recognized, you will not be able to access
them in any way.

74

Chapter 3. Installation and Initial Configuration

Several conditions can cause this to happen:
Hard drive or controller not supported

If you are using a hard drive or controller (IDE, SCSI, or otherwise) not supported by
Linux, the kernel will not recognize your partitions at boot time.

Drive or controller improperly configured

Even if your controller is supported by Linux, it may not be configured correctly.
(This is a problem particularly for SCSI controllers; most non-SCSI controllers should
work fine without additional configuration.)

Refer to the documentation for your hard drive and controller for information on
solving these kinds of problems. In particular, many hard drives will need to have a
jumper set if they are to be used as a "slave" drive (e.g., as the second hard drive). The
acid test for this kind of condition is to boot up Windows or some other operating
system known to work with your drive and controller. If you can access the drive and
controller from another operating system, the problem is not with your hardware
configuration.

See the previous section, Section 3.3.2.1, for information on resolving possible device
conflicts and the following section, Section 3.3.2.3, for information on configuring
SCSI devices.

Controller properly configured, but not detected
Some BIOS-less SCSI controllers require the user to specify information about the
controller at boot time. The following section, Section 3.3.2.3, describes how to force
hardware detection for these controllers.

Hard-drive geometry not recognized
Some older systems, such as the IBM PS/ValuePoint, do not store hard-drive
geometry information in the CMOS memory where Linux expects to find it. Also,
certain SCSI controllers need to be told where to find drive geometry in order for
Linux to recognize the layout of your drive.
Most distributions provide a boot option to specify the drive geometry. In general,
when booting the installation medium, you can specify the drive geometry at the LILO

boot prompt with a command such as:

boot: linux hd=cylinders, heads, sectors

where cylinders, heads, and sectors correspond to the number of cylinders,
heads, and sectors per track for your hard drive.

After installing the Linux software, you can install LILO, allowing you to boot from
the hard drive. At that time, you can specify the drive geometry to the LILO

75

Chapter 3. Installation and Initial Configuration

installation procedure, making it unnecessary to enter the drive geometry each time
you boot. See Section 5.2.2 in Chapter 5 for more about LILO.

3.3.2.3 Problems with SCSI controllers and devices

Presented here are some of the most common problems with SCSI controllers and devices,
such as CD-ROMs, hard drives, and tape drives. If you are having problems getting Linux to
recognize your drive or controller, read on. Let us again emphasize that most distributions use
a modularized kernel and that you might have to load a module supporting your hardware
during an early phase of the installation process. This might also be done automatically for
you.

The Linux SCSI HOWTO contains much useful information on SCSI devices in addition to
that listed here. SCSIs can be particularly tricky to configure at times.

It might be a false economy, for example, to use cheap cables, especially if you use wide
SCSI. Cheap cables are a major source of problems and can cause all kinds of failures, as well
as major headaches. If you use SCSI, use proper cabling.

Here are common problems and possible solutions:

e An SCSI device is detected at all possible IDs. This problem occurs when the
system straps the device to the same address as the controller. You need to change the
jumper settings so that the drive uses a different address from the controller itself.

e Linux reports sense errors, even if the devices are known to be error-free. This
can be caused by bad cables or by bad termination. If your SCSI bus is not terminated
at both ends, you may have errors accessing SCSI devices. When in doubt, always
check your cables. In addition to disconnected cables, bad-quality cables are a
common source of troubles.

o SCSI devices report timeout errors. This is usually caused by a conflict with IRQ,
DMA, or device addresses. Also, check that interrupts are enabled correctly on your
controller.

e SCSI controllers using BIOS are not detected. Detection of controllers using BIOS
will fail if the BIOS is disabled, or if your controller's "signature" is not recognized by
the kernel. See the Linux SCSI HOWTO for more information about this.

e Controllers using memory-mapped I/O do not work. This happens when the
memory-mapped I/O ports are incorrectly cached. Either mark the board's address
space as uncacheable in the XCMOS settings, or disable cache altogether.

e When partitioning, you get a warning "cylinders > 1024," or you are unable to
boot from a partition using cylinders numbered above 1023. BIOS limits the
number of cylinders to 1024, and any partition using cylinders numbered above this
won't be accessible from the BIOS. As far as Linux is concerned, this affects only
booting; once the system has booted, you should be able to access the partition. Your
options are to either boot Linux from a boot floppy, or boot from a partition using
cylinders numbered below 1024. See Section 3.1.7 earlier in this chapter.

e CD-ROM drive or other removable media devices are not recognized at boot
time. Try booting with a CD-ROM (or disk) in the drive. This is necessary for some
devices.

76

Chapter 3. Installation and Initial Configuration

If your SCSI controller is not recognized, you may need to force hardware detection at boot
time. This is particularly important for SCSI controllers without BIOS. Most distributions
allow you to specify the controller IRQ and shared memory address when booting the
installation medium. For example, if you are using a TMC-8xx controller, you may be able to
enter:

boot: linux tmx8xx=Iinterrupt,memory-address

at the LILO boot prompt, where interrupt is the controller IRQ, and memory-address
is the shared memory address. Whether you can do this depends on the distribution of Linux
you are using; consult your documentation for details.

3.3.3 Problems Installing the Software

Installing the Linux software should be trouble-free if you're lucky. The only problems you
might experience would be related to corrupt installation media or lack of space on your
Linux filesystems. Here is a list of common problems:

e System reports "Read error, file not found" or other errors while attempting to
install the software. This is indicative of a problem with your installation medium. If
you are installing from floppy, keep in mind that floppies are quite susceptible to
media errors of this type. Be sure to use brand-new, newly formatted floppies. If you
have a Windows partition on your drive, many Linux distributions allow you to install
the software from the hard drive. This may be faster and more reliable than using
floppies.

If you are using a CD-ROM, be sure to check the disk for scratches, dust, or other
problems that might cause media errors.

The cause of the problem may also be that the medium is in the incorrect format. For
example, many Linux distributions require floppies to be formatted in high-density
Windows format. (The boot floppy is the exception; it is not in Windows format in
most cases.) If all else fails, either obtain a new set of floppies, or re-create the
floppies (using new ones) if you downloaded the software yourself.

e System reports errors such as "tar: read error" or "gzip: not in gzip format".
This problem is usually caused by corrupt files on the installation medium itself. In
other words, your floppy may be error-free, but the data on the floppy is in some way
corrupted. For example, if you downloaded the Linux software using text mode, rather
than binary mode, your files will be corrupt and unreadable by the installation
software. When using FTP, just issue the binary command to set that mode before you
request a file transfer.

o System reports errors such as "device full"" while installing. This is a clear-cut sign
that you have run out of space when installing the software. If the disk fills up, not all
distributions can clearly recover, so aborting the installation won't give you a working
system.

The solution is usually to re-create your filesystems with the mke2fs command, which

will delete the partially installed software. You can then attempt to reinstall the
software, this time selecting a smaller amount of software to install. If you can't do

77

Chapter 3. Installation and Initial Configuration

without that software, you may need to start completely from scratch, and rethink your
partition and filesystem sizes.

e System reports errors such as "read _intr: 0x10" while accessing the hard drive.
This is usually an indication of bad blocks on your drive. However, if you receive
these errors while using mkswap or mkelfs, the system may be having trouble
accessing your drive. This can either be a hardware problem (see Section 3.3.2 earlier
in this chapter), or it might be a case of poorly specified geometry. If you used the
option:

hd=cylinders, heads, sectors

at boot time to force detection of your drive geometry and incorrectly specified the
geometry, you could receive this error. This can also happen if your drive geometry is
incorrectly specified in the system CMOS.

e System reports errors such as "file not found" or "permission denied". This
problem can occur if the necessary files are not present on the installation medium or
if there is a permissions problem with the installation software. For example, some
distributions of Linux have been known to have bugs in the installation software itself;
these are usually fixed rapidly and are quite infrequent. If you suspect that the
distribution software contains bugs, and you're sure that you have done nothing wrong,
contact the maintainer of the distribution to report the bug.

If you have other strange errors when installing Linux (especially if you downloaded the
software yourself), be sure you actually obtained all the necessary files when downloading.

For example, some people use the FTP command:

mget *.*

when downloading the Linux software via FTP. This will download only those files that
contain a "." in their filenames; files without the "." will not be downloaded. The correct
command to use in this case is:

mget *

The best advice is to retrace your steps when something goes wrong. You may think that you
have done everything correctly, when in fact you forgot a small but important step somewhere
along the way. In many cases, just attempting to redownload or reinstall the Linux software
can solve the problem. Don't beat your head against the wall any longer than you have to!

Also, if Linux unexpectedly hangs during installation, there may be a hardware problem of
some kind. See Section 3.3.2 for hints.

3.3.4 Problems after Installing Linux
You've spent an entire afternoon installing Linux. In order to make space for it, you wiped
your Windows and OS/2 partitions and tearfully deleted your copies of SimCity 2000 and

Railroad Tycoon 2. You reboot the system and nothing happens. Or, even worse, something
happens, but it's not what should happen. What do you do?

78

Chapter 3. Installation and Initial Configuration

In Section 3.3.1, earlier in this chapter, we covered the most common problems that can occur
when booting the Linux installation medium; many of those problems may apply here. In
addition, you may be victim to one of the following maladies.

3.3.4.1 Problems booting Linux from floppy

If you are using a floppy to boot Linux, you may need to specify the location of your Linux
root partition at boot time. This is especially true if you are using the original installation
floppy itself and not a custom boot floppy created during installation.

While booting the floppy, hold down the Shift or Ctrl key. This should present you with a
boot menu; press Tab to see a list of available options. For example, many distributions allow
you to boot from a floppy by entering:

boot: linux root=partition

at the boot menu, where partition is the name of the Linux root partition, such as
/dev/hda2. SuSE Linux offers a menu entry early in the installation program that boots your
newly created Linux system from the installation boot floppy. Consult the documentation for
your distribution for details.

3.3.4.2 Problems booting Linux from the hard drive

If you opted to install LILO instead of creating a boot floppy, you should be able to boot
Linux from the hard drive. However, the automated LILO installation procedure used by
many distributions is not always perfect. It may make incorrect assumptions about your
partition layout, in which case you need to reinstall LILO to get everything right. Installing
LILO is covered in Section 5.2.2 in Chapter 5.

Here are some common problems:

o System reports "Drive not bootable-Please insert system disk". You will get this
error message if the hard drive's master boot record is corrupt in some way. In most
cases, it's harmless, and everything else on your drive is still intact. There are several
ways around this:

o While partitioning your drive using fdisk, you may have deleted the partition
that was marked as "active." Windows and other operating systems attempt to
boot the "active" partition at boot time (Linux, in general, pays no attention to
whether the partition is "active," but the Master Boot Records installed by
some distributions like Debian do). You may be able to boot MS-DOS from
floppy and run fdisk to set the active flag on your MS-DOS partition, and all
will be well.

Another command to try (with MS-DOS 5.0 and higher, including all
Windows versions since Windows 95) is:

FDISK /MBR

This command will attempt to rebuild the hard drive master boot record for
booting Windows, overwriting LILO. If you no longer have Windows on your

79

Chapter 3. Installation and Initial Configuration

hard drive, you'll need to boot Linux from floppy and attempt to install LILO
later.

o If you created a Windows partition using Linux's version of fdisk, or vice
versa, you may get this error. You should create Windows partitions only by
using Windows' version of fdisk. (The same applies to operating systems other
than Windows.) The best solution here is either to start from scratch and
repartition the drive correctly, or to merely delete and re-create the offending
partitions using the correct version of fdisk.

o The LILO installation procedure may have failed. In this case, you should boot
either from your Linux boot floppy (if you have one), or from the original
installation medium. Either of these should provide options for specifying the
Linux root partition to use when booting. At boot time, hold down the Shift or
Ctrl key and press Tab from the boot menu for a list of options.

e When you boot the system from the hard drive, Windows (or another operating
system) starts instead of Linux. First of all, be sure you actually installed LILO
when installing the Linux software. If not, the system will still boot Windows (or
whatever other operating system you may have) when you attempt to boot from the
hard drive. In order to boot Linux from the hard drive, you need to install LILO (see
the section Section 5.2.2 in Chapter 5).

On the other hand, if you did install LILO, and another operating system boots instead
of Linux, you have LILO configured to boot that other operating system by default.
While the system is booting, hold down the Shift or Ctrl key and press Tab at the boot
prompt. This should present you with a list of possible operating systems to boot;
select the appropriate option (usually just 1inux) to boot Linux.

If you wish to select Linux as the default operating system to boot, you will need to
reinstall LILO.

It also may be possible that you attempted to install LILO, but the installation
procedure failed in some way. See the previous item on installation.

3.3.4.3 Problems logging in
After booting Linux, you should be presented with a login prompt:
Linux login:

At this point, either the distribution's documentation or the system itself will tell you what to
do. For many distributions, you simply log in as root, with no password. Other possible
usernames to try are guest or test.

Most Linux distributions ask you for an initial root password. Hopefully, you have
remembered what you typed in during installation; you will need it again now. If your
distribution does not ask you for a root password during installation, you can try using an
empty password.

If you simply can't log in, consult your distribution's documentation; the username and
password to use may be buried in there somewhere. The username and password may have

80

Chapter 3. Installation and Initial Configuration

been given to you during the installation procedure, or they may be printed on the login
banner.

One possible cause of this password impasse may be a problem with installing the Linux login
and initialization files. If this is the case, you may need to reinstall (at least parts of) the Linux
software, or boot your installation medium and attempt to fix the problem by hand.

3.3.4.4 Problems using the system

If login is successful, you should be presented with a shell prompt (such as # or $) and can
happily roam around your system. The next step in this case is to try the procedures in
Chapter 4. However, some initial problems with using the system sometimes creep up.

The most common initial configuration problem is incorrect file or directory permissions.
This can cause the error message:

Shell-init: permission denied

to be printed after logging in. (In fact, anytime you see the message permission denied,
you can be fairly certain it is a problem with file permissions.)

In many cases, it's a simple matter of using the chmod command to fix the permissions of the
appropriate files or directories. For example, some distributions of Linux once used the
incorrect file mode 0644 for the root directory (/). The fix was to issue the command:

chmod 755 /

as root. (File permissions are covered in the section Section 4.13 in Chapter 4.) However, in
order to issue this command, you needed to boot from the installation medium and mount
your Linux root filesystem by hand — a hairy task for most newcomers.

As you use the system, you may run into places where file and directory permissions are
incorrect, or software does not work as configured. Welcome to the world of Linux! While
most distributions are quite trouble-free, you can't expect them to be perfect. We don't want to
cover all those problems here. Instead, throughout the book we help you to solve many of
these configuration problems by teaching you how to find them and fix them yourself. In
Chapter 1, we discussed this philosophy in some detail. In Chapter 5, we give hints for fixing
many of these common configuration problems.

81

Chapter 4. Basic Unix Commands and Concepts

Chapter 4. Basic Unix Commands and Concepts

If you've come to Linux from Windows or another non-Unix operating system, you have
a steep learning curve ahead of you. We might as well be candid on this point. Unix is a world
all its own.

In this chapter, we're going to introduce the rudiments of Unix for those readers who have
never had exposure to this operating system. If you are coming from Microsoft Windows or
other environments, the information in this chapter will be absolutely vital to you. Unlike
other operating systems, Unix is not at all intuitive. Many of the commands have seemingly
odd names or syntax, the reasons for which usually date back many years to the early days of
this system. And, although many of the commands may appear to be similar to their
counterparts in the Windows command-line interpreter, there are important differences.

Dozens of other books cover basic Unix usage. You should be able to go to the computer
section of any chain bookstore and find at least several of them on the shelf. (A few we like
are listed in the Bibliography.) However, most of these books cover Unix from the point of
view of someone sitting down at a workstation or terminal connected to a large mainframe,
not someone who is running his own Unix system on a personal computer. A popular
introduction to Unix usage that also covers Linux is Learning the Unix Operating System by
Grace Todino, John Strang, and Jerry Peek, published by O'Reilly.

Also, these books often dwell upon the more mundane aspects of Unix: boring text-
manipulation commands, such as awk, tr, and sed, most of which you will never need unless
you start doing some serious Unix trickery. In fact, many Unix books talk about the original
ed line editor, which has long been made obsolete by vi and Emacs. Therefore, although many
of the Unix books available today contain a great deal of useful information, many of them
contain pages upon pages of humdrum material you couldn't probably care less about at this
point.

Instead of getting into the dark mesh of text processing, shell syntax, and other issues, in this
chapter we strive to cover the basic commands needed to get you up to speed with the system
if you're coming from a non-Unix environment. This chapter is far from complete; a real
beginner's Unix tutorial would take an entire book. It's our hope that this chapter will give you
enough to keep you going in your adventures with Linux, and that you'll invest in a good Unix
book once you have a need to do so. We'll give you enough Unix background to make your
terminal usable, keep track of jobs, and enter essential commands.

Chapter 5 contains material on system administration and maintenance. This is by far the most
important chapter for anyone running his own Linux system. If you are completely new to
Unix, the material found in Chapter 5 should be easy to follow once you've completed the
tutorial here.

One big job we don't cover in this chapter is how to edit files. It's one of the first things you

need to learn on any operating system. The two most popular editors for Linux, vi and Emacs,
are discussed at the beginning of Chapter 9.

82

Chapter 4. Basic Unix Commands and Concepts

4.1 Logging In

Let's assume that your installation went completely smoothly, and you are facing
the following prompt on your screen:

Linux login:

Many Linux users are not so lucky; they have to perform some heavy tinkering when
the system is still in a raw state or in single-user mode. But for now, we'll talk about logging
into a functioning Linux system.

Logging in, of course, distinguishes one user from another. It lets several people work on
the same system at once and makes sure that you are the only person to have access to your
files.

You may have installed Linux at home and are thinking right now, "Big deal. No one else
shares this system with me, and I'd just as soon not have to log in." But logging in under your
personal account also provides a certain degree of protection: your account won't have the
ability to destroy or remove important system files. The system administration account
(covered in the next chapter) is used for such touchy matters.

If you connect your computer to the Internet, even via a modem, make sure you set nontrivial
passwords on all your accounts. Use punctuation and strings that don't represent real words or
names.

Note that some distributions install a so-called graphical login manager right away, so you
might not be greeted by the somewhat arcane 1ogin: prompt in white letters on black
background, but with a fancy graphical login screen, possibly even presenting you with the
user accounts available on your system as well as different modes to log into. The basic login
procedure is the same as described here, however; you still type your username and password.

You were probably asked to set up a login account for yourself when you installed Linux. If
you have such an account, type the name you chose at the Linux login: prompt. If you
don't have an account yet, type root because that account is certain to exist. Some
distributions may also set up an account called install or some other name for fooling
around when you first install the system.

After you choose your account, you see:

Password:

and you need to enter the correct password. The terminal turns off the normal echoing of
characters you enter for this operation so that people looking at the screen cannot read your
password. If the prompt does not appear, you should add a password to protect yourself from
other people's tampering; we'll go into this later.

By the way, both the name and the password are case-sensitive. Make sure the Caps Lock key
is not set because typing ROOT instead of root will not work.

&3

Chapter 4. Basic Unix Commands and Concepts

When you have successfully logged in, you will see a prompt. If you're root, this may be a
simple:

#

For other users, the prompt is usually a dollar sign (5). The prompt may also contain the name
you assigned to your system or the directory you're in currently. Whatever appears here, you
are now ready to enter commands. We say that you are at the "shell level" here and that the
prompt you see is the "shell prompt." This is because you are running a program called the
shell that handles your commands. Right now we can ignore the shell, but later in this chapter
we'll find that it does a number of useful things for us.

As we show commands in this chapter, we'll show the prompt simply as $. So if you see:

$ pwd

it means that the shell prints $ and that pwd is what you're supposed to enter.

4.2 Setting a Password

If you don't already have a password, we recommend you set one. Just enter the command
passwd. The command will prompt you for a password and then ask you to enter it a second
time to make sure you enter it without typos.

There are standard guidelines for choosing passwords so that they're hard for other people to
guess. Some systems even check your password and reject any that don't meet the minimal
criteria. For instance, it is often said that you should have at least six characters in the
password. Furthermore, you should mix uppercase and lowercase characters or include
characters other than letters and digits.

To change your password, just enter the passwd command again. It prompts you for your old
password (to make sure you're you) and then lets you change it.

4.3 Virtual Consoles

As a multiprocessing system, Linux gives you a number of interesting ways to do several
things at once. You can start a long software installation and then switch to reading mail or
compiling a program simultaneously.

Most Linux users, when they want this asynchronous access, will employ the X Window
System. But before you get X running, you can do something similar through virtual consoles.
This feature appears on a few other versions of Unix, but is not universally available.

To try out virtual consoles, hold down the left Alt key and press one of the function keys, F1
through F8. As you press each function key, you see a totally new screen complete with a
login prompt. You can log in to different virtual consoles just as if you were two different
people, and you can switch between them to carry out different activities. You can even run a
complete X session in each console. The X Window System will use the virtual console 7 by
default. So if you start X and then switch to one of the text-based virtual consoles, you can go
back again to X by typing Alt-F7. If you discover that the Alt-+ function key combination

84

Chapter 4. Basic Unix Commands and Concepts

brings up an X menu or some other function instead of switching virtual consoles, use Ctrl +
Alt + function key.

4.4 Popular Commands

The number of commands on a typical Unix system is enough to fill a few hundred reference
pages. And you can add new commands too. The commands we'll tell you about here are just
enough to navigate and to see what you have on the system.

4.4.1 Directories

As with Windows, and virtually every modern computer system, Unix files are organized into
a hierarchical directory structure. Unix imposes no rules about where files have to be, but
conventions have grown up over the years. Thus, on Linux you'll find a directory called /home
where each user's files are placed. Each user has a subdirectory under /home. So if your login
name is mdw, your personal files are located in /home/mdw. This is called your home
directory. You can, of course, create more subdirectories under it.

If you come from a Windows system, the slash (/) as a path separator may look odd to you
because you are used to the backslash (\). There is nothing tricky about the slash. Slashes
were actually used as path separators long before people even started to think about MS-DOS
or Windows. The backslash has a different meaning on Unix (turning off the special meaning
of the next character, if any).

As you can see, the components of a directory are separated by slashes. The term pathname is
often used to refer to this slash-separated list.

What directory is /home in? The directory named /, of course. This is called the root directory.
We have already mentioned it when setting up filesystems.

When you log in, the system puts you in your home directory. To verify this, use the "print
working directory" or pwd command:

S pwd
/home /mdw

The system confirms that you're in /home/mdw.

You certainly won't have much fun if you have to stay in one directory all the time. Now try
using another command, cd, to move to another directory:

$ ed /usr/bin
S pwd
/usr/bin

S ecd

Where are we now? A cd with no arguments returns us to our home directory. By the way, the

home directory is often represented by a tilde (~). So the string ~/programs means that
programs is located right under your home directory.

&5

Chapter 4. Basic Unix Commands and Concepts

While we're thinking about it, let's make a directory called ~/programs. From your home
directory, you can enter either:

S mkdir programs

or the full pathname:

$ mkdir /home/mdw/programs

Now change to that directory:

$ cd programs
$ pwd
/home/mdw/programs

The special character sequence . . refers to "the directory just above the current one." So you
can move back up to your home directory by typing the following:

S ecd ..

The opposite of mkdir is rmdir, which removes directories:

S rmdir programs

Similarly, the m command deletes files. We won't show it here because we haven't yet shown
how to create a file. You generally use the vi or Emacs editor for that (see Chapter 9, but some
of the commands later in this chapter will create files too. With the -7 (recursive) option, rm
deletes a whole directory and all its contents. (Use with care!)

4.4.2 Listing Files

Enter s to see what is in a directory. Issued without an argument, the /s command shows the
contents of the current directory. You can include an argument to see a different directory:

$ 1ls /home

Some systems have a fancy /s that displays special files — such as directories and executable
files — in bold, or even in different colors. If you want to change the default colors, edit the
file /etc/DIR_COLORS, or create a copy of it in your home directory named .dir_colors and
edit that.

Like most Unix commands, Is can be controlled with options that start with a hyphen (-).
Make sure you type a space before the hyphen. One useful option for /s is -a for "all," which
will reveal to you riches that you never imagined in your home directory:

S cd
S 1s -a

.bashrc . fvwmrc
.. .emacs .xinitrc
.bash history .exrc

The single dot refers to the current directory, and the double dot refers to the directory right
above it. But what are those other files beginning with a dot? They are called hidden files.

86

Chapter 4. Basic Unix Commands and Concepts

Putting a dot in front of their names keeps them from being shown during a normal /s
command. Many programs employ hidden files for user options — things about their default
behavior that you want to change. For instance, you can put commands in the file . Xdefaults
to alter how programs using the X Window System operate. So most of the time you can
forget these files exist, but when you're configuring your system you'll find them very
important. We'll list some of them later.

Another useful Is option is -/ for "long." It shows extra information about the files. Figure 4-1
shows typical output and what each field means. Adding the - ("human option") shows the
filesizes rounded to something more easily readable.

Figure 4-1. Output of Is -l

Permissions
(2 for cwner, 3 for
grag, 3 for Date and time of last
ather] Dwner Geonip madification
- TW-T--r-- 1 mdw users 2321 Mar 15 1994 Fontmap
- rW-r--r-- 1 mdw users 139836 Aug 11 09:11 Index.whole
d rwxr-xr-x 2 mdw users 1024 Jan 25 1994 Kfonts
d rwxr-xr-x 3 mdw users 1024 Sep 20 07:40 bin
- TW-Y--¥-- 1 mdw users 124408 Mov 2 10:53 bitgif.tar.gz
d rwxr-xr-x 2 mdw users 2048 Jan 21 1994 bitmaps

Tope of fite Ruribr of Size i bytes Mg
{d" means el ks (fov a divectony; bytes used fo stare
“Hirectory] directary informarion)

We'll discuss the permissions, owner, and group fields later in this chapter, in Section 4.13.
The Is command also shows the size of each file and when it was last modified.

4.4.3 Viewing Files, More or Less

One way to look at a file is to invoke an editor, such as:

$ emacs .bashrc

But if you just want to scan a file quickly, rather than edit it, other commands are quicker. The
simplest is the strangely named cat command (named after the verb concatenate because you
can also use it to concatenate several files into one):

$ cat .bashrc

But a long file will scroll by too fast for you to see it, so most people use the more command
instead:

$ more .bashrc
This prints a screenfull at a time and waits for you to press the spacebar before printing more.

more has a lot of powerful options. For instance, you can search for a string in the file: press
the slash key (/), type the string, and press Return.

87

Chapter 4. Basic Unix Commands and Concepts

A popular variation on the more command is called /ess. It has even more powerful features;
for instance, you can mark a particular place in a file and return there later.

4.4.4 Symbolic Links

Sometimes you want to keep a file in one place and pretend it is in another. This is done most
often by a system administrator, not a user. For instance, you might keep several versions of
a program around, called prog.0.9, prog.1.1, and so on, but use the name prog to refer to
the version you're currently using. Or you may have a file installed in one partition because
you have disk space for it there, but the program that uses the file needs it to be in a different
partition because the pathname is hard-coded into the program.

Unix provides links to handle these situations. In this section, we'll examine the symbolic link,
which is the most flexible and popular type. A symbolic link is a kind of dummy file that just
points to another file. If you edit or read or execute the symbolic link, the system is smart
enough to give you the real file instead. Symbolic links work a lot like shortcuts under
Windows 95/98, but are much more powerful.

Let's take the prog example. You want to create a link named prog that points to the actual
file, which is named prog. 1. 1. Enter the command:

$ 1n -s prog.l.1l prog

Now you've created a new file named prog that is kind of a dummy file; if you run it, you're
really running prog.1.1. Let's look at what Is -/ has to say about the file:

$ 1s -1 prog
1rwXrwxrwx 2 mdw users 8 Nov 17 14:35 prog —-> prog.l.1l

The 1 at the beginning of the line shows that the file is a link, and the little - > indicates the
real file to which the link points.

Symbolic links are really simple, once you get used to the idea of one file pointing to another.
You'll encounter links all the time when installing software packages.

4.5 Shells

As we said before, logging into the system in console mode puts you into a shell. If your
system is configured with a graphical login, logging in brings you to the graphical interface
where you can open an xterm (or similar) window in order to get a shell. The shell interprets
and executes all your commands. Let's look a bit at different shells before we keep going,
because they're going to affect some of the material coming up.

If it seems confusing that Unix offers many different shells, just accept it as an effect of
evolution. Believe us, you wouldn't want to be stuck using the very first shell developed for
Unix, the Bourne shell. While it was a very powerful user interface for its day (the mid-
1970s), it lacked a lot of useful features for interactive use — including the ones shown in this
section. So other shells have been developed over time, and you can now choose the one that
best suits your way of working.

88

Chapter 4. Basic Unix Commands and Concepts

Some of the shells available on Linux are:

bash

csh

ksh

sh

tesh

zsh

Bourne Again shell. The most commonly used (and most powerful) shell on Linux.
POSIX-compliant, compatible with Bourne shell, created and distributed by the GNU
project (Free Software Foundation). Offers command-line editing, history substitution,
and Bourne shell compatibility.

C shell. Developed at Berkeley. Mostly compatible with the Bourne shell for
interactive use, but has a very different interface for programming. Does not offer
command-line editing, although it does have a sophisticated alternative called history
substitution. On Linux, cs# is just another name for the newer fcsh.

Korn shell. Perhaps the most popular on Unix systems generally, and the first to
introduce modern shell techniques (including some borrowed from the C shell) into
the Bourne shell. Compatible with Bourne shell. Offers command-line editing.

Bourne shell. The original shell. Does not offer command-line editing.

Enhanced C shell. Offers command-line editing.

Z shell. The newest of the shells. Compatible with Bourne shell. Offers command-line
editing.

Try the following command to find out what your shell is. It prints out the full pathname
where the shell is located. Don't forget to type the dollar sign:

$ echo $SHELL

You are probably running bash, the Bourne Again shell. If you're running something else, this
might be a good time to change to bash. It's powerful, POSIX-compliant, well-supported, and
very popular on Linux. Use the chsh command to change your shell:

S chsh

Enter password: Type your password here — this is for security's sake
Changing the login shell for mdw
Enter the new value, or press return for the default

Login Shell [/bin/sh]:/bin/bash

89

Chapter 4. Basic Unix Commands and Concepts

Before a user can choose a particular shell as a login shell, that shell must be installed and the
system administrator must make it available by entering it in /etc/shells.

There are a couple of ways to conceptualize the differences between shells. One is to
distinguish Bourne-compatible shells from csh-compatible shells. This will be of interest to
you when you start to program with the shell, also known as writing shell scripts. The Bourne
shell and C shell have different programming constructs. Most people now agree that Bourne-
compatible shells are better, and there are many Unix utilities that recognize only the Bourne
shell.

Another way to categorize shells is to identify those that offer command-line editing (all the
newer ones) versus those that do not. s4 and csh lack this useful feature.

When you combine the two criteria — being compatible with the Bourne shell and offering
command-line editing — your best choice comes down to bash, ksh, or zsh. Try out several
shells before you make your choice; it helps to know more than one, in case someday you find
yourself on a system that limits your choice of shells.

4.6 Useful Keys and How to Get Them to Work

When you type a command, pressing the Backspace key should remove the last character.
Ctrl-U should delete the line from the cursor to the beginning of the line, thus this key
combination will delete the whole line if the cursor is at the end of the line." When you have
finished entering a command, and it is executing, Ctrl-C should abort it, and Ctrl-Z should
suspend it. (When you want to resume the suspended program, enter fg for "foreground.")

Ctrl-S stops the terminal output until you turn it off again with Ctrl-Q. This is probably less
useful today, as most terminal emulations provide scrolling facilities anyway, but it's
important to know if you have hit Ctrl-S by accident and the terminal all of a sudden
"becomes unresponsive." Just hit Ctrl-Q to make it respond again; it was just waiting for you.

If any of these keys fail to work, your terminal is not configured correctly for some reason.
You can fix it through the s#/y command. Use the syntax:

stty function key

where function is what you want to do, and key is the key that you press. Specify a control
key by putting a circumflex (*) in front of the key.

Here is a set of sample commands to set up the functions described earlier:

stty erase “H
stty kill ~U
stty intr ~C
stty susp “Z

Uy Uy Uy Uy

The first control key shown, "1, represents the ASCII code generated by the Backspace key.

! Ctrl-U means hold down the Control key and press u.

90

Chapter 4. Basic Unix Commands and Concepts

By the way, you can generate a listing of your current terminal settings by entering sty -a.
But that doesn't mean you can understand the output: sty is a complicated command with
many uses, some of which require a lot of knowledge about terminals.

4.7 Typing Shortcuts

If you've been following along with this tutorial at your terminal, you may be tired of typing
the same things over and over again. It can be particularly annoying when you make a mistake
and have to start over again. Here is where the shell really makes life easier. It doesn't make
Unix as simple as a point-and-click interface, but it can help you work really fast in a
command environment.

This section discusses command-line editing. The tips here work if your shell is bash, ksh,
tesh, or zsh. Command-line editing treats the last 50 or so lines you typed as a buffer in an
editor. You can move around within these lines and change them the way you'd edit a
document. Every time you press the Return key, the shell executes the current line.

4.7.1 Word Completion

First, let's try something simple that can save you a lot of time. Type the following, without
pressing the Return key:

$ ed /usr/inc

Now press the Tab key. The shell will add 1ude to complete the name of the directory
/usr/include. Now you can press the Return key, and the command will execute.

The criterion for specifying a filename is "minimal completion." Type just enough characters
to distinguish a name from all the others in that directory. The shell can find the name and
complete it — up to and including a slash, if the name is a directory.

You can use completion on commands too. For instance, if you type:

S ema

and press the Tab key, the shell will add the cs to make emacs (unless some other command
in your path begins with ema).

What if multiple files match what you've typed? If they all start with the same characters, the
shell completes the word up to the point where names differ. Beyond that, most shells do
nothing. bash has a neat enhancement: if you press the Tab key twice, it displays all the
possible completions. For instance, if you enter:

$ ed /usr/l

and press the Tab key twice, bash prints something like:

1ib local

91

Chapter 4. Basic Unix Commands and Concepts

4.7.2 Moving Around Among Commands

Press the up arrow, and the command you typed previously appears. The up arrow takes you
back through the command history, while the down arrow takes you forward. If you want to
change a character on the current line, use the left or right arrow keys.

As an example, suppose you tried to execute:

$ mroe .bashrc
bash: mroe: command not found

Of course, you typed mroe instead of more. To correct the command, call it back by pressing
the up arrow. Then press the left arrow until the cursor lies over the o in mroe. You could use
the Backspace key to remove the o and r and retype them correctly. But here's an even neater
shortcut: just press Ctrl-T. It will reverse o and r, and you can then press the Return key to
execute the command.

Many other key combinations exist for command-line editing. But the basics shown here will
help you quite a bit. If you learn the Emacs editor, you will find that most keys work the same
way in the shell. And if you're a vi fan, you can set up your shell so that it uses vi key bindings
instead of Emacs bindings. To do this in bash, ksh, or zsh, enter the command:

$ export VISUAL=vi

In tesh enter:

S setenv VISUAL vi

4.8 Filename Expansion

Another way to save time in your commands is to use special characters to abbreviate
filenames. You can specify many files at once by using these characters. This feature of the
shell is sometimes called "globbing."

The Windows command-line interpreter offers a few crude features of this type. You can use
a question mark to mean "any character" and an asterisk to mean "any string of characters."
Unix provides these wildcards too, but in a more robust and rigorous way.

Let's say you have a directory containing the following C source files:

S 1s
invlijig.c inv2jig.c inv3jig.c invinitijig.c invpar.c

To list the three files containing digits in their names, you could enter:

$ 1s inv?jig.c
invlijig.c inv2jig.c inv3jig.c

The shell looks for a single character to replace the question mark. Thus, it displays invljig.c,
inv2jig.c, and inv3jig.c, but not invinitjig.c because that name contains too many characters.

If you're not interested in the second file, you can specify the ones you want using brackets:

92

Chapter 4. Basic Unix Commands and Concepts

$ 1s inv[13]jig.c
invljig.c inv3jig.c

If any single character within the brackets matches a file, that file is displayed. You can also
put a range of characters in the brackets:

$ 1s inv[1-3]jig.c
invljig.c inv2jig.c inv3jig.c

Now we're back to displaying all three files. The hyphen means "match any character from 1
through 3, inclusive." You could ask for any numeric character by specifying 0-9, and any
alphabetic character by specifying [a-z2-7]. In the latter case, two ranges are required
because the shell is case-sensitive. The order used, by the way, is that of the ASCII character
set.

Suppose you want to see the init file, too. Now you can use an asterisk because you want to
match any number of characters between the i nv and the j1ig:

$ 1ls inv*jig.c
invljig.c inv2jig.c inv3jig.c invinitjig.c

The asterisk actually means "zero or more characters," so if a file named invjig.c existed, it
would be shown too.

Unlike the Windows command-line interpreter, the Unix shells let you combine special
characters and normal characters any way you want. Let's say you want to look for any source
(.c) or object (.0) file that contains a digit. The resulting pattern combines all the expansions
we've studied in this section:

$ 1s *[0-9]*.[co]

Filename expansion is very useful in shell scripts (programs), where you don't always know
exactly how many files exist. For instance, you might want to process multiple log files
named log001, log002, and so on. No matter how many there are, the expression log* will
match them all.

Filename expansions are not the same as regular expressions, which are
used by many utilities to specify groups of strings. Regular expressions
' | are beyond the scope of this book, but are described by many books that
explain Unix utilities. A taste of regular expressions appears in
Chapter 9.

4.9 Saving Your Output

System administrators (and other human beings too) see a lot of critical messages fly by on
the computer screen. It's often important to save these messages so that you can scrutinize
them later, or (all too often) send them to a friend who can figure out what went wrong. So, in
this section, we'll explain a little bit about redirection, a powerful feature provided by Unix
shells. If you come from Windows, you have probably seen a similar, but more limited, type
of redirection in the command-line interpreter there.

93

Chapter 4. Basic Unix Commands and Concepts

If you put a greater-than sign (>) and a filename after any command, the output of the
command will be sent to that file. For instance, to capture the output of /s, you can enter:

$ 1ls /usr/bin > ~/Binaries

A listing of /usr/bin will be stored in your home directory in a file named Binaries. If Binaries
had already existed, the > would wipe out what was there and replace it with the output of the
Is command. Overwriting a current file is a common user error. If your shell is csh or fcsh,
you can prevent overwriting with the command:

$ set noclobber

And in bash you can achieve the same effect by entering:

S noclobber=1 It doesn't have to be 1; any value will have the same
effect.

Another (and perhaps more useful) way to prevent overwriting is to append new output. For
instance, having saved a listing of /usr/bin, suppose we now want to add the contents of /bin
to that file. We can append it to the end of the Binaries file by specifying two greater-than
signs:

S 1ls /bin >> ~/Binaries

You will find the technique of output redirection very useful when you are running a utility
many times and saving the output for troubleshooting.

Most Unix programs have two output streams. One is called the standard output, and the other
is the standard error. If you're a C programmer you'll recognize these: the standard error is the
file pointer named stderr to which you print messages.

The > character does not redirect the standard error. It's useful when you want to save
legitimate output without mucking up a file with error messages. But what if the error
messages are what you want to save? This is quite common during troubleshooting. The
solution is to use a greater-than sign followed by an ampersand. (This construct works in
almost every modern Unix shell.) It redirects both the standard output and the standard error.
For instance:

$ gec invinitjig.c >& error-msg

This command saves all the messages from the gcc compiler in a file named error-msg. On
the Bourne shell and bash you can also say it slightly differently:

$ gcc invinitjig.c &> error-msg
Now let's get really fancy. Suppose you want to save the error messages but not the regular

output — the standard error but not the standard output. In the Bourne-compatible shells you
can do this by entering the following:

$ gce invinitjig.c 2> error-msg

94

Chapter 4. Basic Unix Commands and Concepts

The shell arbitrarily assigns the number 1 to the standard output and the number 2 to the
standard error. So the preceding command saves only the standard error.

Finally, suppose you want to throw away the standard output — keep it from appearing on
your screen. The solution is to redirect it to a special file called /dev/null. (Have you heard
people say things like "Send your criticisms to /dev/null"? Well, this is where the phrase came
from.) The /dev directory is where Unix systems store special files that refer to terminals, tape
drives, and other devices. But /dev/null is unique; it's a place you can send things so that they
disappear into a black hole. For example, the following command saves the standard error and
throws away the standard output:

$ gee invinitjig.c 2>error-msg >/dev/null
So now you should be able to isolate exactly the output you want.

In case you've wondered whether the less-than sign (<) means anything to the shell: yes, it
does. It causes commands to take their input from a file. But most commands allow you to
specify input files on their command lines anyway, so this "input redirection" is rarely
necessary.

Sometimes you want one utility to operate on the output of another utility. For instance, you
can use the sort command to put the output of other commands into a more useful order. A
crude way to do this would be to save output from one command in a file, and then run sort
on it. For instance:

$ du > du_output
$ sort -nr du_output

Unix provides a much more succinct and efficient way to do this using a pipe. Just place a
vertical bar between the first and second commands:

$ du | sort -nr
The shell sends all the input from the du program to the sort program.

In the previous example, du stands for "disk usage" and shows how many blocks each file
occupies under the current directory. Normally, its output is in a somewhat random order:

S du

10 ./zoneinfo/Australia
13 ./zoneinfo/US

9 ./zoneinfo/Canada

4 ./zoneinfo/Mexico

5 ./zoneinfo/Brazil

3 ./zoneinfo/Chile

20 ./zoneinfo/SystemV
118 ./zoneinfo

298 ./ghostscript/doc
183 ./ghostscript/examples
3289 ./ghostscript/fonts

95

Chapter 4. Basic Unix Commands and Concepts

So we have decided to run it through sort with the -n and -» options. The -n option means
"sort in numerical order" instead of the default ASCII sort, and the -» option means "reverse
the usual order" so that the highest number appears first. The result is output that quickly
shows you which directories and files hog the most space:

$ du | sort -rn

34368

16005 ./emacs

16003 ./emacs/20.4

13326 ./emacs/20.4/1isp
4039 ./ghostscript

3289 ./ghostscript/fonts

Because there are so many files, we had better use a second pipe to send output through the
more command (one of the more common uses of pipes):

S du | sort -rn | more

34368

16005 ./emacs

16003 ./emacs/20.4

13326 ./emacs/20.4/1isp
4039 ./ghostscript

3289 ./ghostscript/fonts

An alternative to more could be using the head command here, which only shows the first few
lines (10 by default). Of course, if there is a head command, there also needs to be a fail
command which just shows the last few lines.

4.10 What Is a Command?

We've said that Unix offers a huge number of commands and that you can add new ones. This
makes it radically different from most operating systems, which contain a strictly limited table
of commands. So what are Unix commands, and how are they stored? On Unix, a command is
simply a file. For instance, the /s command is a binary file located in the directory bin. So,
instead of /s, you could enter the full pathname, also known as the absolute pathname:

S /bin/ls

This makes Unix very flexible and powerful. To provide a new utility, a system administrator
can simply install it in a standard directory where commands are located. There can also be
different versions of a command — for instance, you can offer a new version of a utility for
testing in one place while leaving the old version in another place, and users can choose the
one they want.

Here's a common problem: sometimes you enter a command that you expect to be on the
system, but you receive a message such as "Not found." The problem may be that the
command is located in a directory that your shell is not searching. The list of directories
where your shell looks for commands is called your path. Enter the following to see what

96

Chapter 4. Basic Unix Commands and Concepts

your path is (remember the dollar sign, otherwise you won't see the contents of the
environment variable, but only its name, which you know anyway!):

S echo $PATH
/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/usr/lib/java/bin:\
/usr/games:/usr/bin/TeX: .

This takes a little careful eyeballing. The output is a series of pathnames separated by colons.
The first pathname, for this particular user, is /usr/local/bin. The second is /usr/bin, and so on.
So if two versions of a command exist, one in /usr/local/bin and the other in /usr/bin, the one
in /usr/local/bin will execute. The last pathname in this example is simply a dot; it refers to
the current directory. Unlike the Windows command-line interpreter, Unix does not look
automatically in your current directory. You have to tell it to explicitly, as shown here. Some
people think it's a bad idea to look in the current directory, for security reasons. (An intruder
who gets into your account might copy a malicious program to one of your working
directories.) However, this mostly applies to root, so normal users generally do not need to
worry about this.

If a command is not found, you have to figure out where it is on the system and add that
directory to your path. The manual page should tell you where it is. Let's say you find it in
/usr/sbin, where a number of system administration commands are installed. You realize you
need access to these system administration commands, so you enter the following (note that
the first PATH doesn't have a dollar sign, but the second one does):

$ export PATH=$PATH:/usr/sbin

This command adds /usr/sbin, but makes it the last directory that is searched. The command is
saying, "Make my path equal to the old path plus /usr/shin."

The previous command works for some shells but not others. It's fine for most Linux users
who are working in a Bourne-compatible shell like bash. But if you use csh or tcsh, you need
to issue the following command instead:

set path = ($PATH /usr/sbin)

Finally, there are a few commands that are not files; cd is one. Most of these commands affect
the shell itself and therefore have to be understood and executed by the shell. Because they
are part of the shell, they are called built-in commands.

4.11 Putting a Command in the Background

Before the X Window System, which made it easy to run multiple programs at once, Unix
users took advantage of Unix's multitasking features by simply putting an ampersand at the
end of commands, as shown in this example:

$ gcc invinitjig.c &
[1] 21457

The ampersand puts the command into the background, meaning that the shell prompt comes

back, and you can continue to execute other commands while the gcc command is compiling
your program. The [1] is a job number that is assigned to your command. The 21457 is a

97

Chapter 4. Basic Unix Commands and Concepts

process 1D, which we'll discuss later. Job numbers are assigned to background commands in
order and therefore are easier to remember and type than process IDs.

Of course, multitasking does not come for free. The more commands you put into
the background, the slower your system runs as it tries to interleave their execution.

You wouldn't want to put a command in the background if it requires user input. If you do so,
you see an error message, such as:

Stopped (tty input)

You can solve this problem by bringing the job back into the foreground through the fg
command. If you have many commands in the background, you can choose one of them by its
job number or its process ID. For our long-lived gcc command, the following commands are
equivalent:

S fg %1
$ £g 21457

Don't forget the percent sign on the job number; that's what distinguishes job numbers from
process IDs.

To get rid of a command in the background, issue a ki// command:

S kill %1
4.12 Manual Pages

The most empowering information you can get is how to conduct your own research.
Following this precept, we'll now tell you about the online help system that comes built into
Unix systems. It is called manual pages, or manpages for short.

Actually, manual pages are not quite the boon they ought to be. This is because they are short
and take a lot of Unix background for granted. Each one focuses on a particular command and
rarely helps you decide why you should use that command. Still, they are critical. Commands
can vary slightly on different Unix systems, and the manual pages are the most reliable way to
find out what your system does. (LDP deserves a lot of credit for the incredible number of
hours they have put into creating manual pages.) To find out about a command, enter a
command, such as:

$ man ls

Manual pages are divided into different sections depending on their purpose. User commands
are in section 1, Unix system calls in section 2, and so on. The sections that will interest you
most are 1, 5 (file formats), and 8 (system administration commands). When you view
manpages online, the section numbers are conceptual; you can optionally specify them when
searching for a command:

$ man 1 1ls

98

Chapter 4. Basic Unix Commands and Concepts

But if you consult a hardcopy manual, you'll find it divided into actual sections according to
the numbering scheme. Sometimes an entry in two different sections can have the same name.
(For instance, chmod is both a command and a system call.) So you will sometimes see the
name of a manual page followed by the section number in parentheses, as in /s(1).

There is one situation in which you will need the section number on the command line: when
there are several manual pages for the same keyword (e.g., one for a command with that name
and one for a system function with the same name). Suppose you want to look up a library
call, but the man shows you the command because its default search order looks for the
command first. In order to see the manual page for the library call, you need to give its section
number.

Look near the top of a manual page. The first heading is NAME. Under it is a brief one-line
description of the item. These descriptions can be valuable if you're not quite sure what you're
looking for. Think of a word related to what you want, and specify it in an apropos command:

$ apropos edit

The previous command shows all the manual pages that have something to do with editing.
It's a very simple algorithm: apropos simply prints out all the NAME lines that contain the
string you request.

Many other utilities, particularly those offered by the desktops discussed in Chapter 11,
present manual pages attractively.

Like commands, manual pages are sometimes installed in strange places. For instance, you
may install some site-specific programs in the directory /usr/local, and put their manual pages
in /usr/local/man. The man command will not automatically look in /usr/local/man, so when
you ask for a manual page you may get the message "No manual entry." Fix this by
specifying all the top man directories in a variable called MANPATH. For example (you have to
put in the actual directories where the manual pages are on your system):

$ export MANPATH=/usr/man:/usr/local/man

The syntax is like PATH, described earlier in this chapter. Each pair of directories are
separated by a colon. If your shell is c¢sh or tcsh, you need to say:

S setenv MANPATH /usr/man:/usr/local/man

Another environment variable that you may want to set is MANSECT. It determines the order
in which the sections of the manual pages are searched for an entry. For example:

S export MANSECT="2:3:1:5:4:6:7:8:n:9"

searches in section 2 first.

Have you read some manual pages and still found yourself confused? They're not meant to be
introductions to new topics. Get yourself a good beginner's book about Unix, and come back

to manual pages gradually as you become more comfortable on the system; then they'll be
irreplaceable.

99

Chapter 4. Basic Unix Commands and Concepts

Manual pages are not the only source of information on Unix systems. Programs from the
GNU project often have Info pages that you read with the program info. For example, to read
the Info pages for the command find, you would enter:

info find

The info program is arcane and has lots of navigation features; to learn it, your best bet will be
to type Ctrl-H in the info program and read through the Help screen. Fortunately, there are
also programs that let you read Info pages more easily, notably tkinfo and kdehelp. These
commands use the X Window System to present a graphical interface. You can also read Info
pages from Emacs (see Section 9.2 in Chapter 9) or use the command pinfo available on some
Linux distributions that works more like the Lynx web browser.

In recent times, more and more documentation is provided in the form of HTML pages. You
can read those with any web browser (see Chapter 16). For example, in the Konqueror web
browser, you select Open Location... from the Location menu and press the button with the
folder symbol, which opens an ordinary file selection dialog where you can select your
documentation file.

4.13 File Ownership and Permissions

Ownership and permissions are central to security. It's important to get them right, even when
you're the only user, because odd things can happen if you don't. For the files that users create
and use daily, these things usually work without much thought (although it's still useful to
know the concepts). For system administration, matters are not so easy. Assign the wrong
ownership or permission, and you might get into a frustrating bind like being unable to read
your mail. In general, the message:

Permission denied

means that someone has assigned an ownership or permission that restricts access more than
you want.

4.13.1 What Permissions Mean

Permissions refer to the ways in which someone can use a file. There are three such
permissions under Unix:

e Read permission means you can look at the file's contents.
e Write permission means you can change or delete the file.
e Execute permission means you can run the file as a program.

When each file is created, the system assigns some default permissions that work most of
the time. For instance, it gives you both read and write permission, but most of the world has
only read permission. If you have a reason to be paranoid, you can set things up so that other
people have no permissions at all.

Additionally, most utilities know how to assign permissions. For instance, when the compiler
creates an executable program, it automatically assigns executable permission.

100

Chapter 4. Basic Unix Commands and Concepts

There are times when defaults don't work, though. For instance, if you create a shell script or
Perl program, you'll have to assign executable permission yourself so that you can run it.
We'll show how to do that later in this section, after we get through the basic concepts.

Permissions have different meanings for a directory:

e Read permission means you can list the contents of that directory.
e Write permission means you can add or remove files in that directory.
e Execute permission means you can list information about the files in that directory.

Don't worry about the difference between read and execute permission for directories;
basically, they go together. Assign both or neither.

Note that, if you allow people to add files to a directory, you are also letting them remove
files. The two privileges go together when you assign write permission. However, there is a
way you can let users share a directory and keep them from deleting each other's files. See
Section 7.3.3 in Chapter 7.

There are more files on Unix systems than the plain files and directories we've talked about so
far. These are special files (devices), sockets, symbolic links, and so forth — each type
observing its own rules regarding permissions. But you don't need to know the details on each

type.
4.13.2 Owners and Groups

Now, who gets these permissions? To allow people to work together, Unix has three levels of
permission: owner, group, and other. The "other" level covers everybody who has access to
the system and who isn't the owner or a member of the group.

The idea behind having groups is to give a set of users, like a team of programmers, access to
a file. For instance, a programmer creating source code may reserve write permission to
herself, but allow members of her group to have read access through a group permission. As
for "other," it might have no permission at all so that people outside the team can't snoop
around. (You think your source code is that good?)

Each file has an owner and a group. The owner is generally the user who created the file.
Each user also belongs to a default group, and that group is assigned to every file the user
creates. You can create many groups, though, and assign each user to multiple groups. By
changing the group assigned to a file, you can give access to any collection of people you
want. We'll discuss groups more when we get to Section 5.7.4 in Chapter 5.

Now we have all the elements of our security system: three permissions (read, write, execute)
and three levels (user, group, other). Let's look at some typical files and see what permissions

are assigned.

Figure 4-2 shows a typical executable program. We generated this output by executing /s with
the -/ option.

101

Chapter 4. Basic Unix Commands and Concepts

Figure 4-2. Displaying ownership and permissions

(ifiers can regd

g exesule

The awmer can reqd, write,
v esgcule Grawp

- TWX I-X T-X 2 mdw 1lib 16384 Nov 15 08:54 atob
This is g plain file Dperer

Tive growip can read
i execule

Two useful facts stand right out: the owner of the file is an author of this book and your
faithful guide, mdw, while the group is 1ib (perhaps a group created for programmers
working on libraries). But the key information about permissions is encrypted in the set of
letters on the left side of the display.

The first character is a hyphen, indicating a plain file. The next three bits apply to the owner;
as we would expect, mdw has all three permissions. The next three bits apply to members of
the group: they can read the file (not too useful for a binary file) and execute it, but they can't
write to it because the field that should contain a w contains a hyphen instead. And the last
three bits apply to "other"; they have the same permissions in this case as the group.

Here is another example: if you ask for a long listing of a C source file, it would look
something like this:

$ 1s -1
—rTW-YwW-r--— 1 kalle kalle 12577 Apr 30 13:13 simc.c

The listing shows that the owner has read and write (rw) privileges, and so does the group.
Everyone else on the system has only read privileges.

Now suppose we compile the file to create an executable program. The file simc is created by
the gcc compiler:

S gcc -osimc simc.c

S 1s -1

total 36

“TWXIWXIr—X 1 kalle kalle 19365 Apr 30 13:14 simc
—rW-Yw-r--— 1 kalle kalle 12577 Apr 30 13:13 simc.c

In addition to the read and write bits, gcc has set the executable (x) bit for owner, group, and
other on the executable file. This is the appropriate thing to do so that the file can be run:

S ./simc
(output here)

One more example — a typical directory:

drwxr-xr-x 2 mdw lib 512 Jul 17 18:23 perl

102

Chapter 4. Basic Unix Commands and Concepts

The leftmost bit is now a d to show that this is a directory. The executable bits are back
because you want people to see the contents of the directory.

Files can be in some obscure states that aren't covered here; see the /s manual page for gory
details. But now it's time to see how you can change ownership and permissions.

4.14 Changing the Owner, Group,and Permissions

As we said, most of the time you can get by with the default security the system gives you.
But there are always exceptions, particularly for system administrators. To take a simple
example, suppose you are creating a directory under /1ome for a new user. You have to create
everything as root, but when you're done you have to change the ownership to the user;
otherwise, that user won't be able to use the files! (Fortunately, if you use the adduser
command discussed in Section 5.7.5 in Chapter 5, it takes care of ownership for you.)

Similarly, certain utilities such as UUCP and News have their own users. No one ever logs in
as UUCP or News, but those users and groups must exist so that the utilities can do their job in
a secure manner. In general, the last step when installing software is usually to change the
owner, group, and permissions as the documentation tells you to do.

The chown command changes the owner of a file, and the chgrp command changes the group.
On Linux, only root can use chown for changing ownership of a file, but any user can
change the group to another group to which he belongs.

So after installing some software named sampsoft, you might change both the owner and the
group to bin by executing:

chown bin sampsoft
chgrp bin sampsoft

You could also do this in one step by using the dot notation:

chown bin.bin sampsoft

The syntax for changing permissions is more complicated. The permissions can also be called
the file's "mode," and the command that changes permissions is chmod. Let's start our
exploration of this command through a simple example; say you've written a neat program in
Perl or Tcl named header, and you want to be able to execute it. You would type the
following command:

$ chmod +x header
The plus sign means "add a permission," and the x indicates which permission to add.

If you want to remove execute permission, use a minus sign in place of a plus:

$ chmod -x header
This command assigns permissions to all levels — user, group, and other. Let's say that you

are secretly into software hoarding and don't want anybody to use the command but yourself.
No, that's too cruel; let's say instead that you think the script is buggy and want to protect

103

Chapter 4. Basic Unix Commands and Concepts

other people from hurting themselves until you've exercised it. You can assign execute
permission just to yourself through the command:

$ chmod u+x header

Whatever goes before the plus sign is the level of permission, and whatever goes after is the
type of permission. User permission (for yourself) is u, group permission is g, and other is o.
So to assign permission to both yourself and the file's group, enter:

$ chmod ug+x header

You can also assign multiple types of permissions:

$ chmod ug+rwx header

You can learn a few more shortcuts from the chmod manual page in order to impress someone
looking over your shoulder, but they don't offer any functionality besides what we've shown
you.

As arcane as the syntax of the mode argument may seem, there's another syntax that is even
more complicated. We have to describe it, though, for several reasons. First of all, there are
several situations that cannot be covered by the syntax, called symbolic mode, that we've just
shown. Second, people often use the other syntax, called absolute mode, in their
documentation. Third, there are times you may actually find the absolute mode more
convenient.

To understand absolute mode, you have to think in terms of bits and octal notation. Don't
worry, it's not too hard. A typical mode contains three characters, corresponding to the three
levels of permission (user, group, and other). These levels are illustrated in Figure 4-3. Within
each level, there are three bits corresponding to read, write, and execute permission.

Figure 4-3. Bits in absolute mode

400 i) 1o 40 Rl 1] 4 1 1

Let's say you want to give yourself read permission and no permission to anybody else. You
want to specify just the bit represented by the number 400. So the chmod command would be:

S chmod 400 header

To give read permission to everybody, choose the correct bit from each level: 400 for
yourself, 40 for your group, and 4 for other. The full command is:

$ chmod 444 header

104

Chapter 4. Basic Unix Commands and Concepts

This is like using a mode +r, except that it simultaneously removes any write or execute
permission. (To be precise, it's just like a mode of =r, which we didn't mention earlier. The
equal sign means "assign these rights and no others.")

To give read and execute permission to everybody, you have to add up the read and execute
bits: 400 plus 100 is 500, for instance.

So the corresponding command is:

S chmod 555 header

which is the same as =rx. To give someone full access, you would specify that digitasa 7 —
the sum of 4, 2, and 1.

One final trick: how to set the default mode that is assigned to each file you create (with a text
editor, the > redirection operator, and so on). You do so by executing an umask command, or
putting one in your shell's startup file. This file could be called .bashrc, .cshre, or something
else depending on the shell you use (we'll discuss startup files in the next section).

The umask command takes an argument like the absolute mode in chmod, but the meaning of
the bits is inverted. You have to determine the access you want to grant for user, group, and
other, and subtract each digit from 7. That gives you a three-digit mask.

For instance, say you want yourself to have all permissions (7), your group to have read and
execute permissions (5), and others to have no permissions (0). Subtract each bit from 7 and
you get 0 for yourself, 2 for your group, and 7 for other. So the command to put in your
startup file is:

umask 027

A strange technique, but it works. The chmod command looks at the mask when it interprets
your mode; for instance, if you assign execute mode to a file at creation time, it will assign
execute permission for you and your group, but will exclude others because the mask doesn't
permit them to have any access.

4.15 Startup Files

Configuration is a strong element of Unix. This probably stems from two traits commonly
found in hackers: they want total control over their environment, and they strive to minimize
the number of keystrokes and other hand movements they have to perform. So all the major
utilities on Unix — editors, mailers, debuggers, X Window System clients — provide files
that let you override their default behaviors in a bewildering number of ways. Many of these
files have names ending in rc, which means resource configuration.

Startup files are usually in your home directory. Their names begin with a period, which
keeps the Is command from displaying them under normal circumstances. None of the files is
required; all the affected programs are smart enough to use defaults when the file does not
exist. But everyone finds it useful to have the startup files. Here are some common ones:

105

Chapter 4. Basic Unix Commands and Concepts

.bashrc

For the bash shell. The file is a shell script, which means it can contain commands and
other programming constructs. Here's a very short startup file that might have been
placed in your home directory by the tool that created your account:

PS1="\u$' # The prompt contains the user's login name.
HISTSIZE=50 # Save 50 commands for when the user presses the up arrow.

All the directories to search for commands.
PATH=/usr/local/bin:/usr/bin:/bin:/usr/bin/X11

To prevent the user from accidentally ending a login session,
disable Ctrl-D as a way to exit.
IGNOREEOF=1

stty erase ""H" # Make sure the backspace key erases.

.bash_profile

.cshre

dogin

.emacs

For the bash shell. Another shell script. The difference between this script and .bashrc
is that .bash_profile runs only when you log in. It was originally designed so that you
could separate interactive shells from those run by background processors like cron
(discussed in Chapter 8). But it is not very useful on modern computers with the X
Window System because when you open a new terminal window, only .bashrc runs. If
you start up a window with the command xterm -Is, it will run .bash_profile too.

For the C shell or tcsh. The file is a shell script using C shell constructs.

For the C shell or tcsh. The file is a shell script using C shell constructs. Like
.bash_profile in the bash shell, this runs only when you log in. Here are some
commands you might find in .cshrc or .login:

—19o

set prompt # Simple % for prompt.
set history=50 # Save 50 commands for when the user presses the up arrow.

All the directories to search for commands.
set path=(/usr/local/bin /usr/bin /bin /usr/bin/X11)

To prevent the user from accidentally ending a login session,
disable Ctrl-D as a way to exit.

set ignoreeof

stty erase ""H" # Make sure the backspace key erases.

For the Emacs editor. Consists of LISP functions. See Section 11.6.1 in Chapter 11.

106

Chapter 4. Basic Unix Commands and Concepts

.exrc
For the vi editor (also known as ex). Each line is an editor command. See Section 11.1
in Chapter 11.

.newsrc
For news readers. Contains a list of all newsgroups offered at the site.

Xdefaults
For programs using the X Window System. Each line specifies a resource (usually the
name of a program and some property of that program) along with the value that
resource should take. This file is described in Section 11.6.1 in Chapter 11.

Xinitrc
For the X Window System. Consists of shell commands that run whenever you log
into an X session. See Section 11.1 in Chapter 11 for details on using this file.

kde/share/config
This is actually a whole directory with configuration files for the K Desktop
Environment (KDE). You will find a lot of files here, all starting with the name of the
program they configure and ending in rc. Note that you should normally not need to
edit these files manually; the respective programs all come with their own
configuration dialogs. Depending on the KDE version, this path might start with .kde?2
or .kde3.

.gnome

Like the previous entry a whole directory of configuration files, this time for
the GNOME graphical desktop.

4.16 Important Directories
You already know about /home, where user files are stored. As a system administrator and
programmer, several other directories will be important to you. Here are a few, along with
their contents:
/bin

The most essential Unix commands, such as s.

/usr/bin

Other commands. The distinction between /bin and /usr/bin is arbitrary; it was
a convenient way to split up commands on early Unix systems that had small disks.

107

Chapter 4. Basic Unix Commands and Concepts

/usr/sbin

Commands used by the superuser for system administration.

/boot
Location where the kernel and other files used during booting are sometimes stored.
Jetc
Files used by subsystems such as networking, NFS, and mail. Typically, these contain
tables of network services, disks to mount, and so on. Many of the files here are used
for booting the system or individual services of it and will be discussed elsewhere in
this book.
/var
Administrative files, such as log files, used by various utilities.
/var/spool
Temporary storage for files being printed, sent by UUCP, and so on.
/usr/lib
Standard libraries, such as libc.a. When you link a program, the linker always searches
here for the libraries specified in -/ options.
Jusr/lib/X11
The X Window System distribution. Contains the libraries used by X clients, as well
as fonts, sample resources files, and other important parts of the X package. This
directory is usually a symbolic link to /usr/X11R6/lib/X11.
/usr/include
Standard location of include files used in C programs, such as <stdio.h>.
/usr/src
Location of sources to programs built on the system.
/usr/local
Programs and datafiles that have been added locally by the system administrator.
Jetc/skel

Sample startup files you can place in home directories for new users.

108

Chapter 4. Basic Unix Commands and Concepts

/dev

This directory contains the so-called device files, the interface between the filesystem
and the hardware (e.g., /dev/modem represents your modem in the system).

/proc

Just as /dev is the interface between the filesystem and the hardware devices, /proc is
the interface between the filesystem and the running processes, the CPU and memory.
The files here (which are not real files, but rather virtual files generated on-the-fly
when you view them) can give you information about the environment of a certain
process, the state and configuration of the CPU, how your I/O ports are configured,
etc.

4.17 Programs That Serve You

We're including this section because you should start to be interested in what's running on
your system behind your back.

Many modern computer activities are too complex for the system simply to look at a file or
some other static resource. Sometimes these activities need to interact with another running
process.

For instance, take FTP, which you may have used to download some Linux-related documents
or software. When you FTP to another system, another program has to be running on that
system to accept your connection and interpret your commands. So there's a program running
on that system called fipd. The d in the name stands for daemon, which is a quaint Unix term
for a server that runs in the background all the time. Most daemons handle network activities.

You've probably heard of the buzzword client/server enough to make you sick, but here it is
in action — it has been in action for decades on Unix.

Daemons start up when the system is booted. To see how they get started, look in the
Jetc/inittab and /etc/inetd.conf files, as well as distribution-specific configuration files. We
won't go into their formats here. But each line in these files lists a program that runs when the
system starts. You can find the distribution-specific files either by checking the
documentation that came with your system or by looking for pathnames that occur frequently
in /etc/inittab. Those normally indicate the directory tree where your distribution stores its
system startup files.

To give an example of how your system uses /etc/inittab, look at one or more lines with the
string getty or agetty. This is the program that listens at a terminal (tty) waiting for a user
to log in. It's the program that displays the 10gin : prompt we talked about at the beginning
of this chapter.

The /etc/inetd.conf file represents a more complicated way of running programs — another
level of indirection. The idea behind /etc/inetd.conf is that it would waste a lot of system
resources if a dozen or more daemons were spinning idly, waiting for a request to come over
the network. So, instead, the system starts up a single daemon named inetd. This daemon
listens for connections from clients on other machines, and when an incoming connection is

109

Chapter 4. Basic Unix Commands and Concepts

made, it starts up the appropriate daemon to handle it. For example, when an incoming FTP
connection is made, inetd starts up the FTP daemon (fipd) to manage the connection. In this
way, the only network daemons running are those actually in use.

In the next section, we'll show you how to see which daemons are running on your system.
There's a daemon for every service offered by the system to other systems on a network:
fingerd to handle remote finger requests, rwhod to handle rwho requests, and so on. A few
daemons also handle non-networking services, such as kerneld, which handles the automatic
loading of modules into the kernel. (In Versions 2.4 and up, this is called kmod instead and is
no longer a process, but rather a kernel thread.)

4.18 Processes

At the heart of Unix lies the concept of a process. Understanding this concept will help you
keep control of your login session as a user. If you are also a system administrator, the
concept is even more important.

A process is an independently running program that has its own set of resources. For instance,
we showed in an earlier section how you could direct the output of a program to a file while
your shell continued to direct output to your screen. The reason that the shell and the other
program can send output to different places is that they are separate processes.

On Unix, the finite resources of the system, like the memory and the disks, are managed by
one all-powerful program called the kernel. Everything else on the system is a process.

Thus, before you log in, your terminal is monitored by a getty process. After you log in, the
getty process dies (a new one is started by the kernel when you log out) and your terminal is
managed by your shell, which is a different process. The shell then creates a new process each
time you enter a command. The creation of a new process is called forking because one
process splits into two.

If you are using the X Window System, each process starts up one or more windows. Thus,
the window in which you are typing commands is owned by an xterm process. That process
forks a shell to run within the window. And that shell forks yet more processes as you enter
commands.

To see the processes you are running, enter the command ps. Figure 4-4 shows some typical
output and what each field means. You may be surprised how many processes you are
running, especially if you are using X. One of the processes is the ps command itself, which
of course dies as soon as the output is displayed.

110

Chapter 4. Basic Unix Commands and Concepts

Figure 4-4. Output of ps command

$ ps

EID TTY STAT TIME COMMAND

1663 pp3 S 0:01 -bash

1672 pp3 T 0:07 emacs

1676 pp3 R 0:00 ps
PID - Process {0 {used to kill @ provess) TIME - CPU time used so far
TTY - Controlling terminal COMMAND - (ommand running
STAT - State

The first field in the ps output is a unique identifier for the process. If you have a runaway
process that you can't get rid of through Ctrl-C or other means, you can kill it by going to a
different virtual console or X window and entering:

$ kill process-id

The TTY field shows which terminal the process is running on, if any. (Everything run from a
shell uses a terminal, of course, but background daemons don't have a terminal.)

The STAT field shows what state the process is in. The shell is currently suspended, so this
field shows an S. An Emacs editing session is running, but it's suspended using Ctrl-Z. This is
shown by the T in its STAT field. The last process shown is the ps that is generating all this
input; its state, of course, is R because it is running.

The TTME field shows how much CPU time the processes have used. Because both bash and
Emacs are interactive, they actually don't use much of the CPU.

You aren't restricted to seeing your own processes. Look for a minute at all the processes on
the system. The a option stands for all processes, while the x option includes processes that
have no controlling terminal (such as daemons started at runtime):

S ps ax | more
Now you can see the daemons that we mentioned in the previous section.

Recent versions of the ps command have a nice additional option. If you are looking for
a certain process of which you know the name or at least parts of it, you can use the option -C,
followed by the name to see only the processes whose names match the name you specify:

$ ps -C httpd

And here, with a breathtaking view of the entire Unix system at work, we end this chapter
(the lines are cut off at column 76; if you want to see the command lines in their full glory,
add the option -w to the ps command):

kalle@owl:~ > ps aux

USER PID $CPU SMEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 416 64 72 S Mar23 0:57 init [3]
root 2 0.0 0.0 0 02 SW Mar23 30:05 [kflushd]
root 3 0.0 0.0 0 02 SW Mar23 13:26 [kupdate]

111

root
root
root
bin
root
root
root
root
at
nobody
nobody
nobody
nobody
root
root
root
root
root
root
root
root
root
root
root
root
root
root
kalle
root
root
root
root
kdeuser
kalle
kalle
kalle
kalle
kalle
root
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
kalle
root
kalle

1512
1530
1534
1560
1570
1578
1585
1586
1587
1588
1618
1621
1649
1657
1664
1681
1689
1713
1731
1795
1796
1798
1799
1800
2302
2309
2356
5860
21391
21394
17613
20007
27278
27279
27291
27292
27308
27316
27374
27376
27378
27381
27388
27399
27401
27403
27404
27406
27409
27413
27415
27426
27429
27430
27431
27489
27492
27494
30812
30893
30894
30902
30924
1573
5812

ocNeoNoNoNoNoNoNoNoNololNoNoNoNoNoNoloNoloNoloNololNoNoNoNoNolN NololoNoloNolNoloNoloNoRoNoRoNoNoloNoloNoloNoNoNoNolNoNoloNoloNoloNolNoNolNolNeNol

cNeoNoBoNoNoNoNoNoNoloNoNoNoNNtNeoNolNoNoloNol SNeol SN eoleolNeoNeolNel VeololoNoloNolNoloNoRoNoRoNoRoNoNoloNoNoNoloNoNoNoNoNoNoloNoloNolNoNolNoNoNolNeNel

O dINOORFRPROFNOODODORRENOFORFRNONOOOOOJOOODODODODOOOOODODIODIODOOOODODODODIODIOOOODODODIODIOOOOOOO OO

ONJJoooFr JOURFRPFOODUTWWOWOORRFORE®OODODW-TJTOAPEBEDBEBNWNAERPRPR OOOODODODODODODODOOORrHROOORR P OOODODOODOOOOOOoOo oo

Chapter 4. Basic Unix Commands and Concepts

1272
1328
1728
1236
1728
1388
5592
5592
5592
5592
1676
1696
2352
2156
2652
1408
1328
11724
1280
1996
1996
1228
1228
1228
2584
2428
1292
2108
2004
2548
1660
2628
2384
1552
2728
45724
2376
2500
14048
14540
13964
18564
14164
15324
14316
13608
14516
1440
13680
10476
15032
15496
15456
2672
2908
15616
14636
9896
17620
15556
2680
13912
36564
4740
15600

[cNeoNeNe]

108
24
24
24
24
96
92

340

404

196

164
32

352

168

0

0
0
0
0
0
0
56
88
0
0

0
512
1140
636
824

RS S B B R R I B R A R B B S B B R A LV V)

?
ttyl
tty2
tty4
ttyb
tty6
ttyl
tty2
2
’:)
tty3
tty3
el

ttyl
ttyl
ttyl
ttyl

19080 ?

1124
1296
1212
1812
1852
6252
1716
5468
3920

296
4204

520
5664
4844
2728
2436
2424
1568
1776
5648
5092
1916
2900
1784
1580
7132

ttyl
ttyl
il

1D 0 0 0 0 0 D)

?
pts/0
ttyl
ttyl
P}

?
?
pts/2
pts/1
?
?
?
pts/1
2

pts/3
pts/3

20152 2

3320
2408

?
?

112

SW
SW<

NN nNnnmnunnon non nn nn nn

nnnnnn
S==3===

SW

NN nNunmnnnonon " on nononnn "nn nnonnonn nonn n n 1 1 11

Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar23
Mar30
Mar30
Mar31l
Apr03
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr22
Apr23
Apr23
Apr23
Apr23
Apr23
Apr23
Apr24

25

=

=
PR RPRPOOOOMWNOOOODODODODOOOODODODOWONUIODOOOWOOOODODODOODWOOODODODOOODODODODODODOOODODODODODOOOOOOO o

:39
:00
:00
:00
:17
:03
:00
:00
:00
:00
:49
:00
:00
142
:41
:23
:47
:00
:15
:00
:03
: 00
:00
:00
:00
:00
: 00
: 00
:00
132
:01
:00
:00
:00
:00
:00
:00
:00

[kswapd]
[mdrecoveryd]
[khubd]

[portmap]
/sbin/syslogd
/sbin/klogd -c 1
[usbmgr]

[nlservd]
/usr/sbin/atd
[in.identd]
[in.identd]
[in.identd]
[in.identd]
/usr/sbin/rpc.mou
/usr/sbin/rpc.nfs
sendmail: accepti
/usr/sbin/nmbd -D
[smbd]
/usr/sbin/cron
/usr/sbin/lpd
/usr/sbin/nscd
/usr/sbin/inetd
[login]

login]

mingetty]
mingetty]
mingetty]

bash]

bash]
/usr/sbin/gpm -t
[sshd]

[login]

[bash]

[ssh-agent]
/bin/bash

sh /usr/X11R6/bin
tee /home/kalle/.
xinit /home/kalle

[
[
[
[
[
[

1:10 X :0 -auth /home

:00
: 00
:08
:01
136
:03
:00
:10
:02
:00
:01
:00
:06
:03
: 35
129
:03
: 00
:01
:06
:03
:05
:01
122
:00
126
129
:07
:35

bash /home/kalle/
bash --login /opt

kdeinit: dcopserv
kdeinit: klaunche
kdeinit: kded
kdeinit: kdesktop
kdeinit: kxmlrpcd
kdeinit: klipper
kdeinit: khotkeys
kdeinit: Running.
kdeinit: kwrited
/bin/cat

knotify

ksmserver --resto

kdeinit: kwin -se
kdeinit: konsole
kdeinit: konsole
/bin/bash
/bin/bash
kdeinit: kio uise
kdeinit: kcookiej
kdesud

kicker

kdeinit: konsole
/bin/bash

xXemacs

konqueror -mimety

/usr/sbin/smbd -D
kdeinit: konsole

Chapter 4. Basic Unix Commands and Concepts

kalle 5813 0.0 0.6 2836 1720 pts/4 S Apr24 0:00 /bin/bash

kalle 5820 0.1 5.3 18904 13908 pts/4 S Apr24 12:13 xemacs

kalle 6100 0.0 0.1 1660 400 2 S Apr24 0:00 ssh-agent

kalle 11670 0.0 6.2 26836 16376 2 S Apr25 0:16 konqueror -mimety
kalle 13390 0.0 0.6 15596 1812 2 S Apr25 0:20 kdeinit: konsole
kalle 13391 0.0 0.6 2684 1592 pts/5 S Apr25 0:00 /bin/bash

kalle 15039 0.0 0.1 1656 396 2 S Apr25 0:00 ssh-agent

kalle 15337 0.0 0.9 15836 2560 2 S Apr25 0:03 designer

kalle 18660 0.0 6.4 24592 16976 pts/5 S Apr26 4:29 xemacs

kalle 22903 0.2 13.2 42784 34756 7 S Apr26 11:59 kmail -caption KM
kalle 8744 0.0 3.3 15336 8712 2 S 10:09 0:22 ksnapshot

kalle 12077 4.3 4.4 14796 11756 2 R 20:42 0:34 xemacs

kalle 12130 0.0 1.2 13692 3204 2 S 20:50 0:00 kdeinit: kio file
kalle 12132 0.0 1.2 13692 3204 » S 20:50 0:00 kdeinit: kio file
kalle 12152 1.2 0.5 2560 1340 pts/6 S 20:55 0:00 /bin/bash -1
kalle 12162 0.0 0.3 2688 988 pts/6 R 20:56 0:00 ps aux

kalle@owl:~ >

113

Chapter 5. Essential System Management

Chapter 5. Essential System Management

If you're running your own Linux system, one of the first tasks at hand is to learn the ropes of
system administration. You won't be able to get by for long without having to perform some
kind of system maintenance, software upgrade, or mere tweaking to keep things in running
order.

Running a Linux system is not unlike riding and taking care of a motorcycle.! Many
motorcycle hobbyists prefer caring for their own equipment — routinely cleaning the points,
replacing worn-out parts, and so forth. Linux gives you the opportunity to experience
the same kind of "hands-on" maintenance with a complex operating system.

While a passionate administrator can spend any amount of time tuning it for performance, you
really have to perform administration only when a major change occurs: you install a new
disk, a new user comes on the system, or a power failure causes the system to go down
unexpectedly. We discuss all these situations over the next four chapters.

Linux is surprisingly accessible, in all respects — from the more mundane tasks of upgrading
shared libraries to the more esoteric, such as mucking about with the kernel. Because all
the source code is available, and the body of Linux developers and users has traditionally
been of the hackish breed, system maintenance is not only a part of daily life but also a great
learning experience. Trust us: there's nothing like telling your friends how you upgraded from
XFree86 3.3.6 to XFree86 4.0.3 in less than half an hour, and all the while you were
recompiling the kernel to support the ISO 9660 filesystem. (They may have no idea what
you're talking about, in which case you can give them a copy of this book.)

In the next few chapters, we explore your Linux system from the mechanic's point of view —
showing you what's under the hood, as it were — and explain how to take care of it all,
including software upgrades, managing users, filesystems, and other resources, performing
backups, and what to do in emergencies.

Once you put the right entries in startup files, your Linux system will, for the most part, run
itself. As long as you're happy with the system configuration and the software that's running
on it, very little work will be necessary on your part. However, we'd like to encourage Linux
users to experiment with their system and customize it to taste. Very little about Linux is
carved in stone, and if something doesn't work the way that you'd like it to, you should be able
to change that. For instance, if you'd prefer to read blinking green text on a cyan background
rather than the traditional white-on-black, we'll show you how to configure that. (As long as
you promise not to let anyone know who told you.) But we'll also show you something even
more important: after installing a Linux distribution, you usually have lots of services running
that you may not need (like a web server). Any of these services could be a potential security
hole, so you might want to fiddle with the startup files to get only the services you absolutely
need.

It should be noted that many Linux systems include fancy tools to simplify many system
administration tasks. These include YaST on SuSE systems, COAS on Caldera systems, and
a number of utilities on Red Hat systems. These tools can do everything from managing user

! At least one author attests a strong correspondence between Linux system administration and Robert Pirsig's
Zen and the Art of Motorcycle Maintenance. Does Linux have the Buddha nature?

114

Chapter 5. Essential System Management

accounts to creating filesystems to doing your laundry. These utilities can make your life
either easier or more difficult, depending on how you look at them. In these chapters, we
present the "guts" of system administration, demonstrating the tools that should be available
on any Linux system and indeed nearly all Unix systems. These are the core of the system
administrator's toolbox: the metaphorical hammer, screwdriver, and socket wrench that you
can rely on to get the job done. If you'd rather use the 40-hp circular saw, feel free, but it's
always nice to know how to use the hand tools in case the power goes out. Good follow-up
books, should you wish to investigate more topics in Unix system administration, include
the Unix System Administration Handbook, by Evi Nemeth et. al. (Prentice Hall) and
Essential System Administration, by ZAleen Frisch (O'Reilly).

5.1 Maintaining the System

Being the system administrator for any Unix system requires a certain degree of responsibility
and care. This is equally true for Linux, even if you're the only user on your system.

Many of the system administrator's tasks are done by logging into the root account. This
account has special properties on Unix systems; specifically, the usual file permissions and
other security mechanisms simply don't apply to root. That is, root can access and modify
any file on the system, no matter to whom it belongs. Whereas normal users can't damage
the system (say, by corrupting filesystems or touching other users' files), root has no such
restrictions.

Why does the Unix system have security in the first place? The most obvious reason for this is
to allow users to choose how they wish their own files to be accessed. By changing
file-permission bits (with the chmod command), users can specify that certain files should be
readable, writable, or executable only by certain groups of other users, or by no other users at
all. Permissions help ensure privacy and integrity of data; you wouldn't want other users to
read your personal mailbox, for example, or to edit the source code for an important program
behind your back.

The Unix security mechanisms also prevent users from damaging the system. The system
restricts access to many of the raw device files (accessed via /dev — more on this in Section
6.3 in Chapter 6) corresponding to hardware, such as your hard drives. If normal users could
read and write directly to the disk-drive device, they could wreak all kinds of havoc: say,
completely overwriting the contents of the drive. Instead, the system requires normal users to
access the drives via the filesystem — where security is enforced via the file permission bits
described previously.

It is important to note that not all kinds of "damage" that can be caused are necessarily
malevolent. System security is more a means to protect users from their own natural mistakes
and misunderstandings rather than to enforce a police state on the system. And, in fact, on
many systems security is rather lax; Unix security is designed to foster the sharing of data
between groups of users who may be, say, cooperating on a project. The system allows users
to be assigned to groups, and file permissions may be set for an entire group. For instance,
one development project might have free read and write permission to a series of files, while
at the same time other users are prevented from modifying those files. With your own
personal files, you get to decide how public or private the access permissions should be.

115

Chapter 5. Essential System Management

The Unix security mechanism also prevents normal users from performing certain actions,
such as calling certain system calls within a program. For example, there is a system call that
causes the system to halt, called by programs such as shutdown (more on this later in the
chapter) to reboot the system. If normal users could call this function within their programs,
they could accidentally (or purposefully) halt the system at any time.

In many cases, you have to bypass Unix security mechanisms in order to perform system
maintenance or upgrades. This is what the root account is for. Because no such restrictions
apply to root, it is easy for a knowledgeable system administrator to get work done without
worrying about the usual file permissions or other limitations. The usual way to log in as
root is with the su command. su allows you to assume the identification of another user. For
example:

su andy

will prompt you for the password for andy, and if it is correct it will set your user ID to that
of andy. A superuser often wants to temporarily assume a regular user's identity to correct a
problem with that user's files or some similar reason. Without a username argument, su will
prompt you for the root password, validating your user ID as root. Once you are finished
using the root account, you log out in the usual way and return to your own mortal identity.

Why not simply log in as root from the usual login prompt? As we'll see, this is desirable in
some instances, but most of the time it's best to use su after logging in as yourself. On a
system with many users, use of su records a message, such as:

Nov 1 19:28:50 loomer su: mdw on /dev/ttypl

in the system logs, such as /var/log/messages (we'll talk more about these files later). This
message indicates that the user mdw successfully issued an su command, in this case for
root. If you were to log in directly as root, no such message would appear in the logs; you
wouldn't be able to tell which user was mucking about with the root account. This is
important if multiple administrators are on the machine: it is often desirable to find out who
used su and when.

There is an additional little twist to the su command. Just running it as described previously
while only change your user ID, but not give you the settings made for this ID. You might
have special configuration files for each user (we'll show you later how to create these), but
these are not executed when using su this way. In order to emulate a real login with all the
configuration files being executed, you need to add a -, like this:

su - andy
or
su -

for becoming root and executing root's configuration files.

The root account can be considered a magic wand — both a useful and potentially
dangerous tool. Fumbling the magic words you invoke while holding this wand can wreak

116

Chapter 5. Essential System Management

unspeakable damage on your system. For example, the simple eight-character sequence rm -
rf / will delete every file on your system, if executed as root, and if you're not paying
attention. Does this problem seem far-fetched? Not at all. You might be trying to delete an old
directory, such as /usr/src/oldp, and accidentally slip in a space after the first slash, producing
the following:

rm -rf / usr/src/oldp

Also problematic are directory names with spaces in them. Let's say you have directory names
Dir\ I and Dir\ 2, where the backslash indicates that Dir\ I is really one filename containing a
space character. Now you want to delete both directories, but by mistake add an extra space
again:

rm -rf Dir\ *

Now there are two spaces between the backslash and the asterisk. The first one is protected by
the backslash, but not the second one, so it separates the arguments and makes the asterisk a
new argument. Oops, your current directory and everything below it are gone.

Another common mistake is to confuse the arguments for commands such as dd, a command
often used to copy large chunks of data from one place to another. For instance, in order to
save the first 1024 bytes of data from the device /dev/hda (which contains the boot record and
partition table for that drive), one might use the command:

dd if=/dev/hda of=/tmp/stuff bs=1k count=1

However, if we reverse it and of in this command, something quite different happens: the
contents of /tmp/stuff are written to the top of /dev/hda. More likely than not, you've just
succeeded in hosing your partition table and possibly a filesystem superblock. Welcome to the
wonderful world of system administration!

The point here is that you should sit on your hands before executing any command as root.
Stare at the command for a minute before pressing Enter and make sure it makes sense. If
you're not sure of the arguments and syntax of the command, quickly check the manual pages
or try the command in a safe environment before firing it off. Otherwise you'll learn these
lessons the hard way; mistakes made as root can be disastrous.

A nice tip is to use the alias command to make some of the commands less dangerous for
root. For example, you could use:

alias rm="rm -1i"

The -i option stands for interactively and means that the ¥m command will ask you before
deleting each file. Of course, this does not protect you against the horrible mistake shown
above; the -f'option (which stands for force) simply overrides the -i because it comes later.

In many cases, the prompt for the root account differs from that for normal users.
Classically, the root prompt contains a hash mark (+#), while normal user prompts contain $
or 5. (Of course, use of this convention is up to you; it is utilized on many Unix systems,
however.) Although the prompt may remind you that you are wielding the root magic wand,

117

Chapter 5. Essential System Management

it is not uncommon for users to forget this or accidentally enter a command in the wrong
window or virtual console.

Like any powerful tool, the root account can also be abused. It is important, as the system
administrator, to protect the root password, and if you give it out at all, to give it only to those
users whom you trust (or who can be held responsible for their actions on the system). If
you're the only user of your Linux system, this certainly doesn't apply — unless, of course,
your system is connected to a network or allows dial-in login access.

The primary benefit of not sharing the root account with other users is not so much that the
potential for abuse is diminished, although this is certainly the case. Even more important is
that if you're the one person with the ability to use the root account, you have complete
knowledge of how the system is configured. If anyone were able to, say, modify important
system files (as we'll talk about in this chapter), the system configuration could be changed
behind your back, and your assumptions about how things work would be incorrect. Having
one system administrator act as the arbiter for the system configuration means that one person
always knows what's going on.

Also, allowing other people to have the root password means that it's more likely someone
will eventually make a mistake using the root account. Although each person with
knowledge of the root password may be trusted, anybody can make mistakes. If you're the
only system administrator, you have only yourself to blame for making the inevitable human
mistakes as root.

That being said, let's dive into the actual tasks of system administration under Linux. Buckle
your seatbelt.

5.2 Booting the System

There are several ways of booting Linux on your system. The most common methods involve
booting from the hard drive or using a boot floppy. In many cases, the installation procedure
will have configured one or both of these for you; in any case, it's important to understand
how to configure booting for yourself.

5.2.1 Using a Boot Floppy

Traditionally, a Linux boot floppy simply contains a kernel image, which is loaded into
memory when you insert the floppy and start the system.2

Many Linux distributions create a boot floppy for you in this way when installing the system.
Using a boot floppy is an easy way to boot Linux if you don't want to bother booting from the
hard drive. (For example, Windows NT/2000's boot manager is somewhat difficult to
configure for booting Linux. We'll talk about this in the next section.) Once the kernel has
booted from the floppy, you are free to use the floppy drive for other purposes.

2 A Linux boot floppy may instead contain a LILO boot record, which causes the system to boot a kernel from
the hard drive. We'll discuss this in the next section, when we talk more about LILO.

118

Chapter 5. Essential System Management

We'll include some technical information here in order to explain the boot process, but rest
assured that in most cases, you can just insert the floppy disk, and booting works. Reading the
following paragraphs will help you understanding your system, though.

The kernel image is usually compressed, using the same algorithm as the gzip or the bzip2
compression programs (more on this in Section 7.4.2 in Chapter 7). Compression allows the
kernel, which may be a megabyte or more in size, to require only a few hundred kilobytes of
disk space. Part of the kernel code is not compressed: this part contains the routines necessary
to uncompress the kernel from the disk image and load it into memory. Therefore, the kernel
actually "bootstraps" itself at boot time by uncompressing into memory.

A number of parameters are stored in the kernel image. Among these parameters is the name
of the device to use as the root filesystem once the kernel boots. Another parameter is the text
mode to use for the system console. All these parameters may be modified using the rdev
command, which we'll discuss later in this section.

After the kernel has started, it attempts to mount a filesystem on the root device hardcoded in
the kernel image itself. This will serve as the root filesystem — that is, the filesystem on /.
Section 6.1 in Chapter 6 discusses filesystems in more detail; all that you need to know for
now is that the kernel image must contain the name of your root filesystem device. If the
kernel can't mount a filesystem on this device, it gives up, issuing a kernel "panic" message.
(Essentially, a kernel panic is a fatal error signaled by the kernel itself. A panic will occur
whenever the kernel is terminally confused and can't continue with execution. For example, if
there is a bug in the kernel itself, a panic might occur when it attempts to access memory that
doesn't exist. We'll talk about kernel panics more in the section Section 8.6 in Chapter 8.)

The root device stored in the kernel image is that of your root filesystem on the hard drive.
This means that once the kernel boots, it mounts a hard-drive partition as the root filesystem,
and all control transfers to the hard drive. Once the kernel is loaded into memory, it stays
there — the boot floppy need not be accessed again (until you reboot the system, of course).

Given a kernel image, you can create your own boot floppy. On many Linux systems, the
kernel itself is stored in the file /boot/vmlinuz.® This is not a universal convention, however;
other Linux systems store the kernel in /vmlinuz or /vmlinux, and still others in a file such as
/Image. (If you have multiple kernel images, you can use LILO to select which one to boot.
See the next section.) Note that newly installed Linux systems may not have a kernel image
on the hard drive if a boot floppy was created for you. In any case, you can build your own
kernel. It's often a good idea to do this anyway; you can "customize" the kernel to include
only those drivers for your particular hardware. See Section 7.4.2 in Chapter 7 for details.

All right. Let's say that you have a kernel image in the file /boot/vmlinuz. To create a boot
floppy, the first step is to use rdev to set the root device to that of your Linux root filesystem.
(If you built the kernel yourself, this should be already set to the correct value, but it can't hurt
to check with rdev.) We discussed how to create the root device in Section 3.1.2 and
Section 3.1.3 in Chapter 3.

? Why the silly filename? On many Unix systems, the kernel is stored in a file named /vmunix where vm stands
for "virtual memory." Naturally, Linux has to be different and names its kernel images vml/inux, and places them
in the directory /boot to get them out of the root directory. The name vmlinuz was adopted to differentiate
compressed kernel images from uncompressed images. Actually, the name and location of the kernel don't matter
a bit, as long as you have either a boot floppy containing a kernel, or LILO knows how to find the kernel image.

119

Chapter 5. Essential System Management

As root, use rdev -h to print a usage message. As you will see, there are many supported
options, allowing you to specify the root device (our task here), the swap device, ramdisk size,
and so on. For the most part, you needn't concern yourself with these options now.

If we use the command rdev /boot/vmlinuz, the root device encoded in the kernel found in
/boot/vmlinuz will be printed:

courgette:/# rdev /boot/vmlinuz
Root device /dev/hdal

If this is incorrect, and the Linux root filesystem is actually on /dev/hda3, we should use the
following command:

courgette:/# rdev /boot/vmlinuz /dev/hda3
courgette:/#

rdev is the strong, silent type; nothing is printed when you set the root device, so run rdev
/boot/vmlinuz again to check that it is set correctly.

Now you're ready to create the boot floppy. For best results, use a brand-new, formatted
floppy. You can format the floppy under Windows or using fdformat under Linux;” this will
lay down the sector and track information so that the system can auto-detect the size of the
floppy. (See the section Section 6.1 in Chapter 6 for more on using floppies.)

To create the boot floppy, use dd to copy the kernel image to it, as in:

courgette:/# dd if=/boot/vmlinuz of=/dev/£d0 bs=8192

If you're interested in dd, the manual page will be illustrative; in brief, this copies the input
file (if option) named /boot/vmlinuz to the output file (of option) named /dev/fd0 (the first
floppy device), using a block size (bs) of 8192 bytes. Of course, the plebian cp can be used as
well, but we Unix sysadmins love to use cryptic commands to complete relatively simple
tasks. That's what separates us from mortal users.

Your boot floppy should now be ready to go. You can shut down the system (see Section 5.5
later in this chapter) and boot with the floppy, and if all goes well, your Linux system should
boot as it usually does. It might be a good idea to make an extra boot floppy as a spare, and in
Section 8.6 in Chapter 8, we describe methods by which boot floppies can be used to recover
from disaster.

5.2.2 Using LILO

LILO is a general-purpose boot manager that can boot whatever operating systems you have
installed on your machine, including Linux. There are dozens of ways to configure LILO.
Here, we're going to discuss the two most common methods: installing LILO on the master
boot record of your hard drive and installing LILO as a secondary boot loader for Linux only.

LILO is the most common way to boot Linux from the hard drive. (By the expression "boot
from the hard drive," we mean that the kernel itself is stored on the hard drive and no boot

* Some versions of the Debian distribution don't have an fdformat command; use the aptly named superformat
instead.

120

Chapter 5. Essential System Management

floppy is required, but remember that even when you use a boot floppy, control is transferred
to the hard drive once the kernel is loaded into memory.) If LILO is installed on your drive's
master boot record, or MBR, it is the first code to run when the hard drive is booted. LILO
can then boot other operating systems — such as Linux or Windows — and allow you to
select between them at boot time.

It should be mentioned here that LILO is not the only boot manager
available for booting Linux. There are alternatives like grub (Grand

Unified Bootloader) that work just as well. However, because most
distributions use LILO, this is also what we will cover here.

However, Windows NT and later versions of Windows have boot managers of their own that
occupy the MBR. If you are using one of these systems, in order to boot Linux from the hard
drive, you may have to install LILO as the "secondary" boot loader for Linux only. In this
case, LILO is installed on the boot record for just your Linux root partition, and the boot
manager software (for Windows NT/2000) takes care of executing LILO from there when you
wish to boot Linux.

As we'll see, however, the Windows NT/2000 boot managers are somewhat uncooperative
when it comes to booting LILO. This is a poor design decision, and if you must absolutely use
one of these boot managers, it might be easier to boot Linux from floppy instead. Read on. Or,
if you really want to go with Linux all the way, you can use LILO to boot Windows NT/2000
and dump the Windows boot managers completely.

Use of LILO with Windows 95/98/ME/2000 is quite simple. You just configure LILO to boot
Windows 95/98/ME/2000 (see the next section). However, if you install Windows
95/98/ME/2000 after installing LILO, you need to reinstall LILO (as the Windows
95/98/ME/2000 installation procedure overwrites the MBR of your primary hard drive). Just
be sure you have a Linux boot floppy on hand so that you can boot Linux and rerun LILO.

Before proceeding you should note that a number of Linux distributions are capable of
configuring and installing LILO when you first install the Linux software. However, it's often
best to configure LILO yourself, just to ensure that everything is done correctly.

5.2.2.1 The /etcl/lilo.conf file

The first step in configuring LILO is to set up the LILO configuration file, which is often
stored in /etc/lilo.conf. (On other systems, the file may be found in /boot/lilo.conf or
/letc/lilo/config.)

We are going to walk through a sample /ilo.conf file. You can use this file as a base for your
own /ilo.conf and edit it for your own system.

The first section of this file sets up some basic parameters:

boot = /dev/hda
compact

install = /boot/boot.b
map = /boot/map

121

Chapter 5. Essential System Management

The boot line sets the name of the device where LILO should install itself in the boot record.
In this case, we want to install LILO in the master boot record of /dev/hda, the first non-SCSI
hard drive. If you're booting from a SCSI hard drive, use a device name such as /dev/sda
instead. If you give a partition device name (such as /dev/hda?2), instead of a drive device,
LILO will be installed as a secondary boot loader on the named partition. We'll talk about this
in more detail later.

The compact line tells LILO to perform some optimization; always use this unless you are
seriously hacking on your LILO configuration.” Likewise, always use the inst211 and map
lines as shown. install names the file containing the boot sector to use on the MBR, and
map specifies the "map file" that LILO creates when installed. On many distributions (like
SuSE), these files should be in the directory /boot, although on other systems they may be
found in /etc/lilo. /boot/map won't be created until you install LILO for the first time.

Now, for each operating system you wish LILO to boot, add a stanza to /etc/lilo.conf. For
example, a Linux stanza might look like this:

Stanza for Linux with root partition on /dev/hda2.

image = /boot/vmlinuz # Location of kernel

label = linux # Name of OS (for the LILO boot menu)
root = /dev/hda2 # Location of root partition

vga = ask # Ask for VGA text mode at boot time

The image line specifies the name of the kernel image. Subfields include 1zbel, which
gives this stanza a name to use with the LILO boot menu (more on this later); root, which
specifies the Linux root partition; and vga, which specifies the VGA text mode to use for the
system console.

Valid modes for vga are normal (for standard 80x25 display), extended (for extended text
mode, usually 132x44 or 132x60), ask (to be prompted for a mode at boot time), or an
integer (such as 1, 2, or 3). The integer corresponds to the number of the mode you select
when using ask. The exact text modes available depend on your video card; use vga = ask
to get a list.

If you wish to boot multiple Linux kernels — for example, if you're doing some kernel
debugging — you can add an image stanza for each one. The only required subfield of the
image stanza is 1abel. If you don't specify root or vga, the defaults coded into the kernel
image itself using rdev will be used. If you do specify root or vga, these override the values
you may have set using rdev. Therefore, if you are booting Linux using LILO, there's no need
to use rdev; the LILO configuration file sets these boot parameters for you.

A stanza for booting Windows 95/98/ME/2000 would look like the following:

Stanza for Win 95/Win 98/Win ME/Win 2000 partition on /dev/hdal.

other = /dev/hdal # Location of partition
table = /dev/hda # Location of partition table for /dev/hda2
label = windows # Name of OS (for boot menu)
> In some cases, you will need the 1inear option, which should not be used together with compact. See the LILO

documentation for more information.

122

Chapter 5. Essential System Management

If you wish to boot a Windows 95/98/ME/2000 partition located on the second drive, you
should add the line:

loader = /boot/any d.b
to the Windows other stanza.

Many more options are available for LILO configuration. The LILO distribution itself (found
on most Linux FTP sites and distributions) includes an extensive manual describing them all.
The previous examples should suffice for most systems, however.

Once you have your /etc/lilo.confready, you can run the command:

/sbin/lilo

as root. This should display information, such as the following:

courgette:/# /sbin/lilo
Added linux

Added windows
courgette:/#

Using the -v option with /ilo prints more diagnostic information should something go wrong;
also, using the -C option allows you to specify a configuration file other than /etc/lilo.conf.

Once this is done, you're ready to shut down your system (again, see Section 5.5 later in this
chapter for details), reboot, and try it out. The first operating system stanza listed in
/etc/lilo.conf will be booted by default. To select one of the other kernels or operating systems
listed in /etc/lilo.conf, hold down the Shift or Ctrl key or simply press the Scroll Lock key
while the system boots. This should present you with a LILO boot prompt:

boot:
Here, you can press Tab to get a list of available boot options:

boot: tab-key

linux windows

These are the names given with 1abel lines in /etc/lilo.conf. Enter the appropriate label, and
that operating system will boot. In this case, entering windows causes Windows to boot from
/dev/hdal, as we specified in the lilo.conf file.

It should be noted here that some distributions add a fancy GUI to LILO (typically, this
involves a Tux, the Linux penguin, in the background). However, configuring these should be
no different from configuring the plain, old text-mode LILO.

5.2.2.2 Using LILO as a secondary bootloader
If you're using the Windows NT/2000 boot manager, installing the Debian distribution of
Linux, or don't want LILO to inhabit the master boot record of your drive, you can configure

LILO as a secondary bootloader, which will live on the boot record of just your Linux root
partition.

123

Chapter 5. Essential System Management

To do this, simply change the boot = ... line of /etc / lilo.conf to the name of the Linux
root partition. For example:

boot = /dev/hda2

will install LILO on the boot record of /dev/hdaZ2, to boot Linux only. Note that this works
only for primary partitions on the hard drive (not for extended or logical partitions). This
restriction does not apply to the Debian distribution, however, where the MBR can boot an
operating system from a boot sector in an extended (but not logical) partition. In order to boot
Linux in this way, the Linux root partition should be marked as "active" in the partition table.
This can be done using fdisk under Linux or Windows. When booting the system, the BIOS
will read the boot record of the first "active" partition to start Linux.

If you are using Windows NT/2000's boot manager, you should install LILO in this way, and
then tell the boot manager to boot another operating system from that partition on your hard
drive. The method for doing this depends on the boot manager in question; see your
documentation for details.

5.2.2.3 Specifying boot time options

When you first installed Linux, more than likely you booted either from a floppy or a CD-
ROM, which gave you the now-familiar LILO boot prompt. At this prompt you can enter
several boot time options, such as:

hd=cylinders, heads, sectors

to specify the hard-drive geometry. Each time you boot Linux, it may be necessary to specify
these parameters in order for your hardware to be detected correctly, as described in Section
3.1.1 in Chapter 3. If you are using LILO to boot Linux from the hard drive, you can specify
these parameters in /etc/lilo.conf instead of entering them at the boot prompt each time. To the
Linux stanza of the /ilo.conf file, just add a line, such as:

append = "hd=683,16,38"

This causes the system to behave as though hd=683, 16, 38 were entered at the LILO boot
prompt. If you wish to specify multiple boot options, you can do so with a single append
line, as in:

append = "hd=683,16,38 hd=64,32,202"
In this case, we specify the geometry for the first and second hard drives, respectively.

Note that you need to use such boot options only if the kernel doesn't detect your hardware at
boot time, which is unlikely unless you have very old or very uncommon hardware. You
should already know if this is necessary, based on your experiences with installing Linux; in
general, you should have to use an append line in /ilo.conf only if you had to specify these
boot options when first booting the Linux installation media.

There are a number of other boottime options. Most of them deal with hardware detection,

which has already been discussed in Chapter 3. However, the following additional options
may also be useful to you:

124

Chapter 5. Essential System Management

single

Boot the system in single-user mode; skip all the system configuration and start a root
shell on the console. See Section 8.6 in Chapter 8 for hints on using this.

root=partition

Mounts the named partition as the Linux root filesystem. This overrides any value
given in /etc/lilo.conf.

ro

Mounts the root filesystem as read-only. This is usually done in order to run fsck; see
Section 6.1.5 in Chapter 6.

ramdisk= size

Specifies a size, in bytes, for the ramdisk device. This overrides any value in
/Jetc/lilo.conf. Most users need not worry about using the ramdisk; it's useful primarily
for installation.

vga= mode

Sets the VGA display mode. This overrides any value in /etc/lilo.conf. Valid modes
are normal, extended, ask, or an integer. This option is equivalent to the vga =
values used in /ilo.conf; see Section 5.2.2.1 earlier in this chapter.

mem= size

Tells the kernel how much RAM you have. If you have 64 MB or less, the kernel can
get this information from the BIOS, but if you use an older kernel and you have more,
you will have to tell the kernel the exact amount, or it will use only the first 64 MB.
For example, if you have 128 MB, specify mem=128m. Fortunately, this is no longer
necessary with newer kernels.

Any of these options can be entered by hand at the LILO boot prompt or specified with the
append option in /etc/lilo.conf.

LILO includes complete documentation that describes all the configuration options available.
On many Linux systems this documentation can be found in /usr/src/lilo; on Debian systems,
it is in /usr/share/doc/lilo/Manual.txt.gz. If you can't seem to find anything, grab the LILO
distribution from one of the Linux archive sites, or ask your Linux vendor to provide the
sources and documentation for LILO. This documentation includes a manual that describes all
the concepts of booting and using LILO in detail, as well as a README file that contains
excerpts from this manual, formatted as plain text.

5.2.2.4 Removing LILO
If you have LILO installed on your MBR, the easiest way to remove it is to use Windows

fdisk. The command:

125

Chapter 5. Essential System Management

FDISK /MBR
runs fdisk and overwrites the MBR with a valid Windows boot record.

LILO saves backup copies of your original boot record in the files /boot/boot.0300 (for IDE
drives) and /boot/boot.0800 (for SCSI drives). These files contain the MBR of the drive
before LILO was installed. You can use the dd command to replace the boot record on the
drive with this backup copy. For example:

dd if=/boot/boot.0300 of=/dev/hda bs=446 count=1

copies the first 446 bytes of the file /boot/boot.0300 to /dev/hda. Even though the files are 512
bytes in size, only the first 446 bytes should be copied back to the MBR.

Be very careful when using this command! This is one of those cases where blindly executing
commands you find in a book can cause real trouble if you're not sure what you're doing. Use
this method only as a last resort and only if you're certain that the files /boot/boot.0300 or
/boot/boot.0800 contain the boot record you want. Many distributions of Linux come installed
with bogus versions of these two files; you might need to delete them before you install LILO.

The LILO documentation contains further hints for removing LILO and debugging your
LILO configuration.

5.3 System Startup and Initialization

In this section, we're going to talk about exactly what happens when the system boots.
Understanding this process and the files involved is important for performing various kinds of
system configuration.

5.3.1 Kernel Boot Messages

The first step is booting the kernel. As described in the previous section, this can be done
from floppy or hard drive. As the kernel loads into memory, it will print messages to the
system console, but usually also saves them in the system log files as well. As root, you can
always check the file ~var/log/messages (which contains kernel messages emitted during
runtime as well). The command dmesg prints out the last lines of the kernel message ring
buffer; directly after booting, naturally, you will get the boot messages.

In the following few paragraphs, we'll go through a couple of the more interesting messages
and explain what they mean. These messages are all printed by the kernel itself, as each
device driver is initialized. The exact messages printed depend on what drivers are compiled
into your kernel and what hardware you have on your system. You are likely to have more,
fewer or different messages; we'll concentrate here on the messages that are quite common.

The line:

Linux version 2.4.10-64GB-SMP (root@SMP X86.suse.de) \
(gcc version 2.95.3 20010315) #1 SMP Fri Sep 28 17:26:36 GMT 2001

tells you the version number of the kernel, on which machine, when, and with which compiler
it was built.

126

Chapter 5. Essential System Management

Next, the kernel reports which processors it has found and, because this output is from a
system with two processors, how the processors will work together:

Intel MultiProcessor Specification wvl1.1
Virtual Wire compatibility mode.
OEM ID: OEMOOOOO Product ID: PRODO0000000 APIC at: OxFEE00000
Processor #0 Pentium(tm) Pro APIC version 17
Floating point unit present.
Machine Exception supported.
64 bit compare & exchange supported.
Internal APIC present.
Bootup CPU
Processor #1 Pentium(tm) Pro APIC version 17
Floating point unit present.
Machine Exception supported.
64 bit compare & exchange supported.
Internal APIC present.

I/0 APIC #2 Version 17 at OxFEC00000.
Processors: 2

mapped APIC to ffffe000 (fee00000)
mapped IOAPIC to fff£fd000 (£fec00000)
Detected 498673 kHz processor.

Then, it tells us which console font it has picked and which console type it has detected:

Console: color VGA+ 80x25

Note that this involves only the text mode being used by the kernel, not the capabilities of
your video card. (An SVGA video card is reported as VGA+ as far as the console text mode is
concerned.)

The kernel gathers information about the PCI bus and checks for any PCI cards present in the
system:

PCI: PCI BIOS revision 2.10 entry at 0Oxfbl40, last bus=1
PCI: Using configuration type 1

PCI: Probing PCI hardware

PCI: Using IRQ router PIIX [8086/7110] at 00:07.0

PCI: Found IRQ 14 for device 00:07.2

PCI: Sharing IRQ 14 with 00:0b.0

Limiting direct PCI/PCI transfers.

You'll then see the "BogoMIPS" calculation for your processor:

Calibrating delay loop... 996.14 BogoMIPS
Calibrating delay loop... 996.14 BogoMIPS
Total of 2 processors activated (1992.29 BogoMIPS).

This is an utterly bogus (hence the name) measurement of processor speed, which is used to
obtain optimal performance in delay loops for several device drivers. The kernel also prints
information on the system memory:

Memory: 770672k/786368k available (1390k kernel code, 15308k reserved, 392k data,
128k init, 0Ok highmem)

Here, we see that 770672 KB of RAM are available for the system to use; the kernel itself is
using 1390 KB.

127

Chapter 5. Essential System Management

Various memory structures and properties of the CPU are then determined. For example, the
line:

CPU serial number disabled.

tells you that the Linux kernel has simply turned off the infamous serial number feature of the
Pentium III CPU.

Linux then sets up networking, the mouse port, and the serial driver. A line such as:

ttyS00 at 0x03f8 (irg = 4) is a 16550A

means that the first serial device (/dev/ttyS00, or COM1) was detected at address 0x03f8, IRQ
4, using 16550A UART functions. Next comes some more hardware detection like the real-
time clock and the floppy drive:

Real Time Clock Driver wv1.10e

Floppy drive(s): fd0 is 1.44M
FDC 0 is a post-1991 82077
loop: loaded (max 8 devices)
ide-floppy driver 0.97.sv

A bit later, the system is checking for a SCSI host adapter. The kernel prints out information
about all SCSI devices found; this is verbose and not really worth reproducing here. The line:

Adding Swap: 120480k swap-space (priority 42)

tells you how much swap space the kernel has found. Among the further tasks performed
during a typical boot are finding and configuring a parallel port (1p1), detecting and
configuring the network card, and finally setting up the USB subsystem.

5.3.2 init, inittab, and rc Files

Once the device drivers are initialized, the kernel executes the program init, which is found in
/etc, /bin, or /sbin (it's /sbin/init on most systems). init is a general-purpose program that
spawns new processes and restarts certain programs when they exit. For example, each virtual
console has a gefty process running on it, started by iniz. Upon login, the getty process is
replaced with another. After logging out, init starts a new getty process, allowing you to log in
again.

init is also responsible for running a number of programs and scripts when the system boots.
Everything init does is controlled by the file /etc/inittab. In order to understand this file, you
need to understand the concept of runlevels first.

A runlevel is a number or letter that specifies the current system state, as far as init is
concerned. For example, when the system runlevel is changed to 3, all entries in /etc/inittab
containing 3 in the column specifying the runlevels will be executed. Runlevels are a useful
way to group entries in /etc/inittab together. For example, you might want to say that runlevel
1 executes only the bare minimum of configuration scripts, runlevel 2 executes everything in
runlevel 1 plus networking configuration, runlevel 3 executes everything in levels 1 and 2
plus dial-in login access, and so on. Today, the Red Hat distribution is set up so that

128

Chapter 5. Essential System Management

runlevel 5 automatically starts the X Window System graphical interface. The SuSE
distribution does it at runlevel 3, and the Debian distribution does so at runlevel 2 — provided
you have installed X.

For the most part, you don't need to concern yourself with runlevels. When the system boots,
it enters the default runlevel (set in /etc/inittab, as we will soon show). On most systems, this
default is runlevel 2 or 3. After we discuss normal booting, we'll show you how to enter
another runlevel that you will sometimes need to use — runlevel 1, or single-user mode.

Let's take a look at a sample /etc/inittab file:

Set the default runlevel to three
id:3:initdefault:

Execute /etc/rc.d/rc.sysinit when the system boots
si:S:sysinit:/etc/rc.d/rc.sysinit

Run /etc/rc.d/rc with the runlevel as an argument

10:0:wait:/etc/rc.d/rc
ll:1:wait:/etc/rc.d/rc
12:2:wait:/etc/rc.d/rc

1
2
13:3:wait:/etc/rc.d/rc
l4:4:wait:/etc/rc.d/rc
15:5:wait:/etc/rc.d/rc
16:6:wait:/etc/rc.d/rc

o Ui W NP O

Executed when we press ctrl-alt-delete
ca::ctrlaltdel:/sbin/shutdown -t3 -rf now

Start agetty for virtual consoles 1 through 6
cl:12345:respawn:/sbin/agetty 38400 ttyl
c2:12345:respawn:/sbin/agetty 38400 tty2
c3:45:respawn:/sbin/agetty 38400 tty3
c4:45:respawn:/sbin/agetty 38400 tty4
c5:45:respawn:/sbin/agetty 38400 tty5
c6:45:respawn:/sbin/agetty 38400 tty6

Fields are separated by colons. The last field is the most recognizable: it is the command that
init executes for this entry. The first field is an arbitrary identifier (it doesn't matter what it is
so long as it's unique in the file) while the second indicates what runlevels cause the command
to be invoked. The third field tells init how to handle this entry; for example, whether to
execute the given command once or to respawn the command whenever it exits.

The exact contents of /etc/inittab depend on your system and the distribution of Linux you
have installed.

In our sample file, we see first that the default runlevel is set to 3. The action field for this
entry is initdefault, which causes the given runlevel to be set to the default. That's the
runlevel normally used whenever the system boots. You can override the default with any
level you want by running irit manually (which you might do when debugging your
configuration) and passing in the desired runlevel as an argument. For instance, the following
command shuts down all current processes and starts runlevel 5 (warn all your users to log off
before doing this!):

tigger# init 5

129

Chapter 5. Essential System Management

LILO can also boot in single-user mode (usually runlevel 1) — see Section 5.2.2.3 earlier in
this chapter.

The next entry tells inif to execute the script /etc/rc.d/rc.sysinit when the system boots. (The
action field is sysinit, which specifies that this entry should be executed when init is
first started at system boot.) This file is simply a shell script containing commands to handle
basic system initialization; for example, swapping is enabled, filesystems are checked and
mounted, and the system clock is synchronized with the CMOS clock. You can take a look at
this file on your system; we'll be talking more about the commands contained therein in
Chapter 6; sees Section 6.1 and Section 6.2. On other distributions, this file might be
elsewhere. For example, on SuSE it is /etc/init.d/boot, which is also where it should be
according to the Linux Filesystem Hierarchy Standard (FHS).

Next, we see that the system executes the script /etc/rc.d/rc when it enters any of the runlevels
through 6, with the appropriate runlevel as an argument. rc is a generic startup script that
executes other scripts as appropriate for that runlevel. The action field here is wa i t, which
tells init to execute the given command, and to wait for it to complete execution before doing
anything else.

5.3.3 rc Files

Linux stores startup commands in files with rc in the name, using an old Unix convention.
The commands do all the things necessary to have a fully functioning system, like starting the
servers or daemons mentioned in Chapter 4. Thanks to these commands, the system comes up
ready with logging facilities, mail, a web server, or whatever you installed and asked it to run.
As explained in the previous section, the files are invoked from /etc/inittab. The commands
are standard shell commands, and you can simply read the various rc files to see what they do.

In this section, we describe the structure of the rc files so that you can understand where
everything starts, and so that you can start or stop servers manually in the rare case that they
don't do what you want them to do. We'll use Red Hat as our model, but once you get the idea
of what to look for, you can find the corresponding files on any Linux distribution. Red Hat is
both a good and a bad example because it violates the FHS. The Linux FHS is a distribution-
neutral initiative to define standard directory names and filenames for important system files.
Any Linux distribution that wants to be a good Linux citizen should follow this standard. Red
Hat has decided — not for the first time — not to be a good citizen, so the path- and file-
names given here for Red Hat give you an example of the variety that you may encounter
when looking for system files. Examples for distributions following the FHS are SuSE and
Debian.

On Red Hat, the top-level rc script is /etc/rc.d/rc. The path is slightly different in other
distributions (/etc/init.d/rc on SuSE, for instance), but the contents are similar. In the previous
section, you saw how the /etc/inittab invokes the script under a variety of circumstances with
different numbers from 0 to 6 as arguments. The numbers correspond to runlevels, and each
one causes the rc files to invoke a different set of scripts. So our next step is to find the scripts
corresponding to each runlevel.

On Red Hat, scripts for each runlevel are stored in the directory /etc/rc.d/rcN.d where N is the
runlevel being started. Thus, for runlevel 3, scripts in /etc/rc.d/rc3.d would be used. Again,

130

Chapter 5. Essential System Management

slightly different conventions are the rule in other distributions. On Debian, for instance,
the directory for each runlevel is /etc/rciv.d/.

Take a look in one of those directories; you will see a number of filenames of the form
Snnxxxx or Knnxxxx where nn is a number from 00 to 99, and xxxx is the name of some
system service. The scripts whose names begin with K are executed by /etc/rc.d/rc first to kill
any existing services, and then the scripts whose names begin with S are executed to start new
services.

The numbers nn in the names are used to enforce an ordering on the scripts as they are
executed: scripts with lower numbers are executed before those with higher numbers.
The name xxxx is simply used to help you identify to which system service the script
corresponds. This naming convention might seem odd, but it makes it easy to add or remove
scripts from these directories and have them automatically executed at the appropriate time by
Jetc/re.d/rc. For customizing startup scripts, you'll find it convenient to use a graphical
runlevel editor, such as ksysv in KDE.

For example, the script to initialize networking might be called S/0network, while the script
to stop the system logging daemon might be called K70syslog. If these files are placed in the
appropriate /etc/rc.d/rcN.d directories, /etc/rc.d/rc will run them, in numerical order, at system
startup or shutdown time. If the default runlevel of your system is 3, look in /etc/rc.d/rc3.d to
see which scripts are executed when the system boots normally.

Because the same services are started or stopped at different runlevels, the Red Hat
distribution uses symbolic links instead of repeating the same script in multiple places. Thus,
each S or K file is a symbolic link that points to a central directory that stores startup or
shutdown scripts for all services. On Red Hat, this central directory is /etc/rc.d/init.d, while on
SuSE and Debian, it is /etc/init.d. On Debian and SuSE, the directory contains a script called
skeleton that you can adapt to start and stop any new daemons you might write.

Knowing the location of a startup or shutdown script is useful in case you don't want to
completely reboot or enter a different runlevel, but need to start or stop a particular service.
Look in the init.d directory for a script of the appropriate name and execute it, passing the
parameter start or stop. For example, on SuSE, if you want the Apache web server to be
running but your system is in a runlevel that does not include Apache, just enter the
following:

tigger# /sbin/init.d/apache start

Another important system configuration script is /etc/rc.d/rc.local, which is executed after the
other system initialization scripts are run. (How is this accomplished? Generally, a symbolic
link to rc.local is made in each /etc/rc.d/rch.d directory with the name S99/ocal. Because 99
is the largest numerical order any of the S scripts can have, it is executed last. Voila!) You can
edit rc.local to accomplish any peculiar or otherwise out-of-place system commands at boot
time, or if you're not sure where else they should be executed. Debian doesn't have an
equivalent of the rc.local script, but nothing stops you from adding it and invoking it from rc
if you're used to having it.

The next entry, labeled ca, is executed when the key combination Ctrl-Alt-Delete is pressed
on the console. This key combination produces an interrupt that usually reboots the system.

131

Chapter 5. Essential System Management

Under Linux, this interrupt is caught and sent to init, which executes the entry with the
action field of ctrlaltdel. The command shown here, /sbin/shutdown -t3 -rf now, will
do a "safe" reboot of the system. (See Section 5.5 later in this chapter.) This way we protect
the system from sudden reboot when Ctrl-Alt-Delete is pressed.

Finally, the inittab file includes entries that execute /shin/agetty for the first six virtual
consoles. agetty is one of the several gerfy variants available for Linux. These programs
permit logins on terminals; without them the terminal would be effectively dead and would
not respond when a user walked up and pressed a key or mouse button. The various getty
commands open a terminal device (such as a virtual console or a serial line), set various
parameters for the terminal driver, and execute /bin/login to initiate a login session on that
terminal. Therefore, to allow logins on a given virtual console, you must be running gefty or
agetty on it. agetty is the version used on a number of Linux systems, but others use getty,
which has a slightly different syntax. See the manual pages for getty and agetty on your
system.

agetty takes two arguments: a baud rate and a device name. The port names for Linux virtual
consoles are /dev/ttyl, /dev/tty2, and so forth. agetty assumes the given device name is relative
to /dev. The baud rate for virtual consoles should generally be 38400.

Note that the action field for each agetty entry is respawn. This means that init should
restart the command given in the entry when the agetty process dies, which is every time a
user logs out.

Now you should be familiar with init, but the various files and commands in /etc/rc.d, which
do all the work, remain a mystery. We can't delve into these files without more background on
other system administration tasks, such as managing filesystems. We'll lead you through these
tasks in the next few chapters, and eventually all should be clear.

5.4 Single-User Mode

Most of the time, you operate the system in multiuser mode so that users can log in. But there
is a special state called single-user mode in which Unix is running but there is no login
prompt. When you're in single-user mode, you're basically the superuser (root). You may
have to enter this mode during installation if something goes wrong. Single-user mode is
important for certain routine system administration tasks, such as checking corrupted
filesystems. (This is not fun; try not to corrupt your filesystem. For instance, always shut
down the system through a shutdown command before you turn off the power. This is
described in the next section.)

Under single-user mode, the system is nearly useless; very little configuration is done,
filesystems are unmounted, and so on. This is necessary for recovering from certain kinds of
system problems; see Section 8.6 in Chapter 8 for details.

Note that Unix is still a multiprocessing system, even in single-user mode. You can run
multiple programs at once. Servers can run in the background so that special functions, such
as the network, can operate. But if your system supports more than one terminal, only the
console can be used. And the X Window System cannot run.

132

Chapter 5. Essential System Management

5.5 Shutting Down the System

Fortunately, shutting down the Linux system is much simpler than booting and startup.
However, it's not just a matter of hitting the reset switch. Linux, like all Unix systems, buffers
disk reads and writes in memory. This means disk writes are delayed until absolutely
necessary, and multiple reads on the same disk block are served directly from RAM. This
greatly increases performance as disks are extremely slow relative to the CPU.

The problem is that if the system were to be suddenly powered down or rebooted, the buffers
in memory would not be written to disk, and data could be lost or corrupted. /sbin/update is a
program started from /etc/rc.d/boot on most systems; it flushes dirty buffers (ones that have
been changed since they were read from the disk) back to disk every five seconds to prevent
serious damage from occurring should the system crash. However, to be completely safe, the
system needs to undergo a "safe" shutdown before rebooting. This will not only ensure that
disk buffers are properly synchronized, but also allow all running processes to exit cleanly.

shutdown is the general, all-purpose command used to halt or reboot the system. As root,
you can issue the command:

/sbin/shutdown -r +10

to cause the system to reboot in 10 minutes. The -» switch indicates the system should be
rebooted after shutdown, and +10 is the amount of time to wait (in minutes) until shutting
down. The system will print a warning message to all active terminals, counting down until
the shutdown time. You can add your own warning message by including it on the command
line, as in:

/sbin/shutdown -r +10 "Rebooting to try new kernel"

You can also specify an absolute time to shutdown, as in:

/sbin/shutdown -r 13:00

to reboot at 1:00 pm. Likewise, you can say:

/sbin/shutdown -r now
to reboot immediately (after the safe shutdown process).

Using the -4 switch instead of - will cause the system to simply be halted after shutdown;
you can then turn off the system power without fear of losing data. If you specify neither -4
nor -7, the system will go into single-user mode.

As we saw in Section 5.3.2, you can have init catch the Ctrl-Alt-Delete key sequence and
execute a shutdown command in response to it. If you're used to rebooting your system in this
way it might be a good idea to check that your /etc/inittab contains a ctrlaltdel entry.
Note that you should never reboot your Linux system by pressing the system power switch or
the reboot switch on the front panel of your machine. Unless the system is flat-out hung (a
rare occurrence), you should always use shutdown. The great thing about a multiprocessing
system is that one program may hang, but you can almost always switch to another window or
virtual console to recover.

133

Chapter 5. Essential System Management

shutdown provides a number of other options. The -¢ switch will cancel a currently running
shutdown. (Of course, you can kill the process by hand using kill, but shutdown -c¢ might be
easier.) The -k switch will print the warning messages but not actually shut down the system.
See the manual page for shutdown(8) if you're interested in the gory details.

5.6 The /proc Filesystem

Unix systems have come a long way with respect to providing uniform interfaces to different
parts of the system; as you will learn in the next chapter, hardware is represented in Linux in
the form of a special type of file. There is, however, a special filesystem called the /proc
filesystem that goes even one step further: it unifies files and processes.

From the user's or the system administrator's point of view, the /proc filesystem looks just like
any other filesystem; you can navigate around it with the cd command, list directory contents
with the Is command, and view file contents with the cat command. However, none of these
files and directories occupies any space on your hard disk. The kernel traps accesses to the
/proc filesystem and generates directory and file contents on the fly. In other words, whenever
you list a directory or view file contents in the /proc filesystem, the kernel dynamically
generates the contents you want to see.

To make this less abstract, let's see some examples. The following example displays the list of
files in the top-level directory of the /proc filesystem:

owl # 1ls /proc

1 1618 17613 27191 27317 2859 8929 kcore elf rtc
11120 1621 1795 27192 27320 2860 9 kmsg scsi
11121 1649 1796 27204 27324 28746 Dbus ksyms self
11153 1657 1798 27205 27326 28747 cmdline loadavg slabinfo
15039 1664 1799 27221 27374 28754 config.gz locks stat
1512 1681 1800 27229 27377 29877 cpuinfo lvm swaps
1530 1689 2 27287 27379 29878 devices mdstat sys
1534 1703 20007 27289 27380 29944 dma meminfo tty
1560 1708 21391 27292 27381 3 fb misc uptime
1570 1709 21394 27297 27397 4 filesystems modules version
1578 1710 2302 27308 27515 5 fs mounts

1585 1711 2309 27310 27518 5841 ide mtrr

1586 1712 2356 27312 27521 5842 interrupts net

1587 1713 27182 27314 2786 5860 ioports partitions

1588 1731 27183 27315 28536 6100 kcore pci

The numbers will be different on your system, but the general organization will be the same.
All those numbers are directories that represent each of the processes running on your system.
For example, let's look at the information about the process with the ID 1534:

tigger # l1ls /proc/1534
cmdline environ fd mem stat status
cwd exe maps root statm

You see a number of files that each contain information about this process. For example, the
cmdline file shows the command line with which this process was started. status gives
information about the internal state of the process and cwd links to the current working
directory of this process.

Probably you'll find the hardware information even more interesting than the process
information. All the information that the kernel has gathered about your hardware is collected

134

Chapter 5. Essential System Management

in the /proc filesystem, even though it can be difficult to find the information you are looking
for.

Let's start by checking your machine's memory. This is represented by the file /proc/meminfo:

owl # cat /proc/meminfo

total: used: free: shared: buffers: cached:
Mem: 267919360 255311872 12607488 0 40587264 77791232
Swap: 123371520 5861376 117510144

MemTotal: 261640 kB
MemFree: 12312 kB
MemShared: 0 kB
Buffers: 39636 kB
Cached: 75968 kB
BigTotal: 0 kB
BigFree: 0 kB
SwapTotal: 120480 kB
SwapFree: 114756 kB

If you then try the command fiee, you can see that you get exactly the same information, only
the numbers are reformatted a bit. free does nothing more than read /proc/meminfo and
rearrange the output a bit.

Most tools on your system that report information about your hardware do it this way. The
/proc filesystem is a portable and easy way to get at this information. The information is
especially useful if you want to add new hardware to your system. For example, most
hardware boards need a few I/O addresses to communicate with the CPU and the operating
system. If you configured two boards to use the same I/O addresses, disaster is about to
happen. You can avoid this by checking which I/O addresses the kernel has already detected
as being in use:

tigger # more /proc/ioports

0000-001f dmal
0020-003f picl
0040-005f timer
0060-006f keyboard
0080-009f dma page reg
00a0-00bf pic2
00c0-00df dma?2
00£f0-00ff npu
01f0-01£f7 ide0
0220-022f soundblaster
02e8-02ef serial (auto)
0388-038b OPL3/0PL2
03c0-03df vga+
03f0-03£f5 floppy
03f6-03f6 ide0
03£7-03£7 floppy DIR
03f8-03ff serial (auto)
0530-0533 WSS config
0534-0537 MSS audio codec
e000-e0be aic7xxx
ed00-edlf ethO

Now you can look for I/O addresses that are free. Of course, the kernel can show I/O
addresses only for boards that it has detected and recognized, but in a correctly configured
system, this should be the case for all boards.

135

Chapter 5. Essential System Management

You can use the /proc filesystem for the other information you might need when configuring
new hardware as well: /proc/interrupts lists the occupied interrupt lines (IRQs) and /proc/dma
lists the DMA channels in use.

5.7 Managing User Accounts

Even if you're the only actual human being who uses your Linux system, understanding how
to manage user accounts is important — even more so if your system hosts multiple users.

User accounts serve a number of purposes on Unix systems. Most prominently, they give the
system a way to distinguish between different people who use the system for reasons of
identification and security. Each user has a personal account with a separate username and
password. As discussed in Section 4.13 in Chapter 4, users may set permissions on their files,
allowing or restricting access to them by other users. Each file on the system is "owned" by a
particular user, who may set the permissions for that file. User accounts are used to
authenticate access to the system; only those people with accounts may access the machine.
Also, accounts are used to identify users, keep system logs, tag electronic mail messages with
the name of the sender, and so forth.

Apart from personal accounts, there are users on the system who provide administrative
functions. As we've seen, the system administrator uses the root account to perform
maintenance — but usually not for personal system use. Such accounts are accessed using the
su command, allowing another account to be accessed after logging in through a personal
account.

Other accounts on the system may not involve human interaction at all. These accounts are
generally used by system daemons, which must access files on the system through a specific
user ID other than root or one of the personal user accounts. For example, if you configure
your system to receive a newsfeed from another site, the news daemon must store news
articles in a spool directory that anyone can access but only one user (the news daemon) can
write to. No human being is associated with the news account; it is an "imaginary" user set
aside for the news daemon only.

One of the permission bits that can be set on executables is the setuid bit, which causes
the program to be executed with the permissions of the owner of that file. For example, if
the news daemon were owned by the user news, and the setuid bit were set on the executable,
it would run as if by the user news. news would have write access to the news spool
directory, and all other users would have read access to the articles stored there. This is
a security feature. News programs can give users just the right amount of access to the news
spool directory, but no one can just play around there.

As the system administrator, it is your job to create and manage accounts for all users (real

and virtual) on your machine. This is actually a painless, hands-off task in most cases, but it's
important to understand how it works.

136

Chapter 5. Essential System Management

5.7.1 The passwd File

Every account on the system has an entry in the file /etc/passwd. This file contains entries,
one line per user, that specify several attributes for each account, such as the username, real
name, and so forth.

Each entry in this file is of the format:

username:password:uid:gid:gecos:homedir:shell

The following list explains each field:

username

A unique character string, identifying the account. For personal accounts, this is the
name the user logs in with. On most systems it is limited to eight alphanumeric
characters — for example, larry or kirsten.

password

uid

gid

gecos

An encrypted representation of the user's password. This field is set using the passwd
program to set the account's password; it uses a one-way encryption scheme that is
difficult (but not impossible) to break. You don't set this by hand; the passwd program
does it for you. Note, however, that if the first character of the passwd field is * (an
asterisk), the account is "disabled"; the system will not allow logins as this user. See
Section 5.7.5 later in this chapter.

The user ID, a unique integer the system uses to identify the account. The system uses
the uid field internally when dealing with process and file permissions; it's easier and
more compact to deal with integers than byte strings. Therefore, both the 7 d and the
username identify a particular account: the uid is more important to the system,
while username is more convenient for humans.

The group ID, an integer referring to the user's default group, found in the file
Jetc/group. See Section 5.7.4, later in this chapter.

Miscellaneous information about the user, such as the user's real name, and optional
"location information" such as the user's office address or phone number. Such
programs as mail and finger use this information to identify users on the system; we'll
talk more about it later. By the way, gecos is a historical name dating back to the
1970s; it stands for General Electric Comprehensive Operating System. GECOS has
nothing to do with Unix, except that this field was originally added to /etc/passwd to
provide compatibility with some of its services.

137

Chapter 5. Essential System Management

homedir

The user's home directory, for his personal use; more on this later. When the user first
logs in, her shell finds its current working directory in the named homedi r.

shell

The name of the program to run when the user logs in; in most cases, this is the full
pathname of a shell, such as /bin/bash or /bin/tcsh.

Many of these fields are optional; the only required fields are username, uid, gid, and
homedir. Most user accounts have all fields filled in, but "imaginary" or administrative
accounts may use only a few.

Here are two sample entries you might find in /etc/passwd:

root:ZxPsI9Zjivd9Y:0:0:The root of all evil:/root:/bin/bash
aclark:BjDf5hBysDsii:104:50:Anna Clark:/home/aclark:/bin/bash

The first entry is for the root account. First of all, notice that the uid of root is 0. This is
what makes root root: the system knows that uid 0 is "special" and that it does not have the
usual security restrictions. The gid of root is also 0, which is mostly a convention. Many of
the files on the system are owned by root and the root group, which have a uid and gid of
0, respectively. More on groups in a minute.

On many systems, root uses the home directory /root, or just /. This is not usually relevant
because you most often use su to access root from your own account. Also, it is tradition to
use a Bourne-shell variant (in this case /bin/bash) for the root account, although you can use
the C shell if you like. (Shells are discussed in Section 4.5 in Chapter 4.) Be careful, though:
Bourne shells and C shells have differing syntax, and switching between them when using
root can be confusing and lead to mistakes.

The second entry is for an actual human being, username aclark. In this case, the uid is
104. The u1d field can technically be any unique integer; on many systems, it's customary to
have user accounts numbered 100 and above and administrative accounts in the sub-100
range. The gid is 50, which just means that ac1ark is in whatever group is numbered 50 in
the /etc/group file. Hang on to your horses; groups are covered Section 5.7.4 later in this
chapter.

Home directories are often found in /home, and named for the username of their owner. This
is, for the most part, a useful convention that avoids confusion when finding a particular user's
home directory, but you can technically place a home directory anywhere. You should,
however, observe the directory layout used on your system.

Note that as the system administrator, it's not usually necessary to modify the /etc/passwd file

directly. Several programs are available that can help you create and maintain user accounts;
see Section 5.7.5, which follows.

138

Chapter 5. Essential System Management

5.7.2 Shadow Passwords

To some extent, it is a security risk to let everybody with access to the system view
the encrypted passwords in /efc/passwd. Special crack programs are available that try a huge
number of possible passwords and check whether the encrypted version of those passwords is
equal to a specified one.

To overcome this potential security risk, shadow passwords have been invented. When
shadow passwords are used, the password field in /etc/passwd contains only an x or a *,
which can never occur in the encrypted version of a password. Instead, a second file called
/etc/shadow is used. This file contains entries that look very similar to those in /etc/passwd,
but contain the real encrypted password in the password field. /etc/shadow is readable only by
root, so normal users do not have access to the encrypted passwords. The other fields in
Jetc/shadow, except the username and the password, are present as well, but normally contain
bogus values or are empty.

Note that in order to use shadow passwords, you need special versions of the programs that
access or modify user information, such as passwd or login. Nowadays, most distributions
come with shadow passwords already set up so that this should not be a problem for you.
Debian users should use "shadowconfig on" instead to ensure that shadow passwords are
enabled on their systems.

There are two tools for converting "normal" user entries to shadow entries and back. pwconv
takes the /etc/passwd file, looks for entries that are not yet present in /etc/shadow, generates
shadow entries for those, and merges them with the entries already present in /etc/shadow.

pwunconv is rarely used because it gives you less security instead of more. It works like
pwconv, but generates traditional /etc/passwd entries that work without /etc/shadow
counterparts.

5.7.3 PAM and Other Authentication Methods

You might think that having two means of user authentication, /etc/passwd and /etc/shadow,
is already enough choice, but you are wrong in this case. There are a number of other
authentication methods with strange names, such as Kerberos authentication (so named after
the dog from Greek mythology that guards the entrance to Hell). While we think that shadow
passwords provide enough security for almost all cases, it all depends on how much security
you really need and how paranoid you want to be.

The problem with all those authentication methods is that you cannot simply switch from one
to another because you always need a set of programs, such as login and passwd, that go with
those tools. To overcome this problem, the Pluggable Authentication Methods (PAM) system
has been invented. Once you have a PAM-enabled set of tools, you can change the
authentication method of your system by reconfiguring PAM. The tools will automatically get
the code necessary to perform the required authentication procedures from dynamically
loaded shared libraries.

Setting up and using PAM is beyond the scope of this book, but you can get all the

information you need from http://www.kernel.org/pub/linux/libs/pam/. Most modern
distributions will set up PAM for you as well.

139

Chapter 5. Essential System Management

5.7.4 The Group File

User groups are a convenient way to logically organize sets of user accounts and allow users
to share files within their group or groups. Each file on the system has both a user and a group
owner associated with it. Using /s -/, you can see the owner and group for a particular file, as
in:

rutabaga%$ 1ls -1 boiler. tex
“IWXIW-T—— 1 mdw megabozo 10316 Oct 6 20:19 boiler.tex
rutabaga%

This file is owned by the user mdw and belongs to the megabozo group. We can see from the
file permissions that mdw has read, write, and execute access to the file; that anyone in the
megabozo group has read and write access; and that all other users have read access only.

This doesn't mean that mdw is in the megabozo group; it simply means the file may be
accessed, as shown by the permission bits, by anyone in the megabozo group (which may or
may not include mdw).

This way files can be shared among groups of users, and permissions can be specified
separately for the owner of the file, the group to which the file belongs, and everyone else. An
introduction to permissions appears in Section 4.13 in Chapter 4.

Every user is assigned to at least one group, which you specify in the gid field of the
/etc/passwd file. However, a user can be a member of multiple groups. The file /etc/group
contains a one-line entry for each group on the system, very similar in nature to /etc/passwd.
The format of this file is:

groupname:password: gid:members

Here, groupname is a character string identifying the group; it is the group name printed
when using commands such as Is -/.

password is an optional encrypted password associated with the group, which allows users
not in this group to access the group with the newgrp command. Read on for information on
this.

gid is the group ID used by the system to refer to the group; it is the number used in the gid
field of /etc/passwd to specity a user's default group.

members is a comma-separated list of usernames (with no whitespace in between),
identifying those users who are members of this group, but who have a different gid in
/etc/passwd. That is, this list need not contain those users who have this group set as their

"default" group in /etc/passwd; it's only for users who are additional members of the group.

For example, /etc/group might contain the following entries:

140

Chapter 5. Essential System Management

root:*:0:
bin:*:1:root,daemon
users:*:50:
bozo:*:51:1inus, mdw
megabozo:*:52:kibo

The first entries, for the groups root and bin, are administrative groups, similar in nature to
the "imaginary" accounts used on the system. Many files are owned by groups, such as root
and bin. The other groups are for user accounts. Like user IDs, the group ID values for user
groups are often placed in ranges above 50 or 100.

The password field of the group file is something of a curiosity. It isn't used much, but in
conjunction with the newgrp program it allows users who aren't members of a particular
group to assume that group ID if they have the password. For example, using the command:

rutabaga% newgrp bozo
Password: password for group bozo
rutabaga%

starts a new shell with the group ID of bozo. If the password field is blank, or the first
character is an asterisk, you receive a permission denied error if you attempt to newgrp
to that group.

However, the password field of the group file is seldom used and is really not necessary. (In
fact, most systems don't provide tools to set the password for a group; you could use passwd
to set the password for a dummy user with the same name as the group in /etc/passwd and
copy the encrypted password field to /etc/group.) Instead, you can make a user a member of
multiple groups simply by including the username in the membe rs field for each additional
group. In the previous example, the users 1inus and mdw are members of the bozo group, as
well as whatever group they are assigned to in the /etc/passwd file. If we wanted to add
1inus to the megabozo group as well, we'd change the last line of the previous example to:

megabozo:*:52:kibo, linus

The command groups tells you which groups you belong to, as in:

rutabaga% groups
users bozo

Giving a list of usernames to groups lists the groups to which each user in the list belongs.

When you log in, you are automatically assigned to the group ID given in /etc/passwd, as well
as any additional groups for which you're listed in /etc/group. This means you have "group
access" to any files on the system with a group ID contained in your list of groups. In this
case, the group permission bits (set with chmod g+...) for those files apply to you (unless
you're the owner, in which case the owner permission bits apply instead).

Now that you know the ins and outs of groups, how should you assign groups on your
system? This is really a matter of style and depends on how your system will be used. For
systems with just one or a handful of users, it's easiest to have a single group (called, say,
users) to which all personal user accounts belong. Note that all the system groups — those

141

Chapter 5. Essential System Management

groups contained within /etc/group when the system is first installed — should probably be
left alone. Various daemons and programs may depend upon them.

If you have a number of users on your machine, there are several ways to organize groups.
For example, an educational institution may have separate groups for students, faculty, and
staff. A software company might have different groups for each design team. On other
systems, each user is placed into a separate group, named identically to the username. This
keeps each pigeon in its own hole, so to speak. Files can also be assigned to special groups;
many users create new groups and place files into them for sharing the files between users.
However, this requires adding users to the additional groups, a task that usually requires the
system administrator to intervene (by editing /etc/group or using utilities, such as gpasswd on
Debian systems). It's really up to you.

Another situation in which groups are often used is special hardware groups. Let's say that
you have a scanner that is accessed via /dev/scanner. If you do not want to give everybody
access to the scanner, you could create a special group called scanner, assign /dev/scanner
to this group, make this special file readable for the group and nonreadable for everybody
else, and add everybody who is allowed to use the scanner to the scanner group in the
Jetc/groups file.

5.7.5 Creating Accounts

Creating a user account requires several steps: adding an entry to /etc/passwd, creating the
user's home directory, and setting up the user's default configuration files (such as .bashrc) in
her home directory. Luckily, you don't have to perform these steps manually; nearly all Linux
systems include a program called adduser to do this for you.°®

Running adduser as root should work as follows. Just enter the requested information at the
prompts; many of the prompts have reasonable defaults you can select by pressing Enter:

Adding a new user. The username should not exceed 8 characters
in length, or you many run into problems later.

Enter login name for new account (“C to quit): norbert
Editing information for new user [norbert]

Full Name: Norbert Ebersol
GID [1007]: 117

Checking for an available UID after 500
First unused uid is 501

UID [501]: (enter)

Home Directory [/home/norbert]: (enter)
Shell [/bin/bash]: (enter)

Password [norbert]: (norbert's password)

Information for new user [norbert]:

® Note that some Linux systems, such as Red Hat or SuSE, use a different set of tools for account creation and
deletion. If the sequence of inputs in this section does not work for you, check the documentation for your
distribution. (Red Hat allows accounts to be managed through the control-panel tool, and SuSE does it via YaST;
Debian includes a noninteractive "adduser" script that automatically sets up users based on the configuration file
Jetc/adduser.conf’). In addition, there are graphical user management programs like kuser from KDE (see
Chapter 11).

142

Chapter 5. Essential System Management

Home directory: [/home/norbert] Shell: [/bin/bash]
Password: [(norbert's password)] uid: [501] gid: [117]

Is this correct? [y/N]: y

Adding login [norbert] and making directory [/home/norbert]
Adding the files from the /etc/skel directory:
./.emacs -> /home/norbert/./.emacs
./.kermrc -> /home/norbert/./.kermrc
./.bashrc -> /home/norbert/./.bashrc
. more files ...

There should be no surprises here; just enter the information as requested or choose the
defaults. Note that adduser uses 100 as the default group ID, and looks for the first unused
user ID after 500 (500 is used as the minimum on SuSE and Red Hat, Debian uses 1000). It
should be safe to go along with these defaults; in the previous example we used a group ID of
117 because we designated that to be the group for the user, as well as the default user ID of
501.

After the account is created, the files from /etc/skel are copied to the user's home directory.
/etc/skel contains the "skeleton" files for a new account; they are the default configuration
files (such as .emacs and .bashrc) for the new user. Feel free to place other files here if your
new user accounts should have them.

After this is done, the new account is ready to roll; norbert can log in, using the password
set using adduser. To guarantee security, new users should always change their own
passwords, using passwd, immediately after logging in for the first time.

root can set the password for any user on the system. For example, the command:

passwd norbert

prompts for a new password for norbert, without asking for the original password. Note,
however, that you must know the root password in order to change it. If you forget the root
password entirely, you can boot Linux from an "emergency floppy," and clear the password
field of the /etc/passwd entry for root. See Section 8.6 in Chapter 8.

Some Linux systems provide the command-line-driven useradd instead of adduser. This
program requires you to provide all relevant information as command-line arguments. If you
can't locate adduser and are stuck with useradd, see the manual pages, which should help you
out.

5.7.6 Deleting and Disabling Accounts

Deleting a user account is much easier than creating one; this is the well-known concept of
entropy at work. To delete an account, you must remove the user's entry in /etc/passwd,
remove any references to the user in /etc/group, and delete the user's home directory, as well
as any additional files created or owned by the user. For example, if the user has an incoming
mailbox in /var/spool/mail, it must be deleted as well.

The command userdel (the yin to useradd's yang) deletes an account and the account's home
directory. For example:

143

Chapter 5. Essential System Management

userdel -r norbert

will remove the recently created account for norbert. The -r option forces the home
directory to be removed as well. Other files associated with the user — for example, the
incoming mailbox, crontab files, and so forth — must be removed by hand. Usually these are
quite insignificant and can be left around. By the end of this chapter, you should know where
these files are, if they exist. A simple way to find the files associated with a particular user is
through the command:

find / -user username -1s

This will give an Is -/ listing of each file owned by username. Of course, to use this, the
account associated with username must still have an entry in /etc/passwd. If you deleted the
account, use the -uid num argument instead, where num is the numeric user ID of the dearly
departed user.

Temporarily (or not-so-temporarily) disabling a user account, for whatever reason, is even
simpler. You can either remove the user's entry in /etc/passwd (leaving the home directory
and other files intact), or add an asterisk to the first character of the password field of the
Jetc/passwd entry, as so:

aclark:*BjDf5hBysDsii:104:50:Anna Clark:/home/aclark:/bin/bash

This will disallow logins to the account in question. Note that if you use shadow password,
you need to do the same thing in /etc/shadow.

5.7.7 Modifying User Accounts

Modifying attributes of user accounts and groups is usually a simple matter of editing
Jetc/passwd and /etc/group. Many systems provide commands such as usermod and groupmod
to do just this; it's often easier to edit the files by hand.

To change a user's password, use the passwd command, which will prompt for a password,
encrypt it, and store the encrypted password in the /etc/passwd file.

If you need to change the user ID of an existing account, you can do this by editing the uid
field of /etc/passwd directly. However, you should also chown the files owned by the user to
that of the new uid. For example:

chown -R aclark /home/aclark

will set the ownership for all files in the home directory used by aclark back to aclark, if
you changed the uid for this account. If /s -/ prints a numeric user ID, instead of a username,
this means there is no username associated with the uid owning the files. Use chown to fix
this.

144

Chapter 6. Managing Filesystems, Swap Space, and Devices

Chapter 6. Managing Filesystems, Swap Space, and
Devices

You probably created filesystems and swap space when you first installed Linux (most
distributions help you do the basics). Here is a chance to fine-tune these resources. Most of
the time, you do these things shortly after installing your operating system, before you start
loading up your disks with fun stuff. But occasionally you will want to change a running
system, in order to add a new device or perhaps upgrade the swap space when you upgrade
your RAM.

6.1 Managing Filesystems

To Unix systems, a filesystem is some device (such as a hard drive, floppy, or CD-ROM) that
is formatted to store files. Filesystems can be found on hard drives, floppies, CD-ROMs, and
other storage media that permit random access. (A tape allows only sequential access, and
therefore can't contain a filesystem per se.)

The exact format and means by which files are stored is not important; the system provides
a common interface for all filesystem types it recognizes. Under Linux, filesystem types
include the Second Extended filesystem, or ext2fs, which you probably use to store Linux
files (also ext3 is slowly taking over); the VFAT filesystem, which allows files on Windows
95/98/ME partitions and floppies to be accessed under Linux; and several others, including
the ISO 9660 filesystem used by CD-ROM.

Each filesystem type has a very different underlying format for storing data. However, when
you access any filesystem under Linux, the system presents the data as files arranged into a
hierarchy of directories, along with owner and group IDs, permission bits, and the other
characteristics with which you're familiar.

In fact, information on file ownership, permissions, and so forth is provided only by
filesystem types that are meant to be used for storing Linux files. For filesystem types that
don't store this information, the kernel drivers used to access these filesystems "fake" the
information. For example, the MS-DOS filesystem has no concept of file ownership;
therefore, all files are presented as if they were owned by root. This way, above a certain
level, all filesystem types look alike, and each file has certain attributes associated with it.
Whether this data is actually used in the underlying filesystem is another matter altogether.

As the system administrator, you need to know how to create filesystems should you want to
store Linux files on a floppy or add additional filesystems to your hard drives. You also need
to know how to use the various tools to check and maintain filesystems should data corruption
occur. Also, you must know the commands and files used to access filesystems — for
example, those on floppy or CD-ROM.

6.1.1 Filesystem Types
Table 6-1 lists the filesystem types supported by the Linux kernel as of Version 2.4.10. New

filesystem types are always being added to the system, and experimental drivers for several
filesystems not listed here are available. To find out what filesystem types your kernel

145

Chapter 6. Managing Filesystems, Swap Space, and Devices

supports, look at the file /proc/filesystems. You can select which filesystem types to support
when building your kernel; see Section 7.4.2 in Chapter 7.

Table 6-1. Linux filesystem types

Filesystem Type |Description

Second Extended ext2 Most common Linux filesystem

filesystem

Reiser filesystem reiserfs |A journaling filesystem for Linux

Third Extended Another journaling filesystem for Linux that is downward-
ext3 . .

filesystem compatible with ext?

Minix filesystem minix |Original Minix filesystem; rarely used

ROM filesystem romfs |A tiny read-only filesystem, mainly used for ramdisks

CRAM filesystem cramfs |A compressed read-only filesystem, often used on PDAs

Network File System
(NES)

NES

Allows access to remote files on network

UMSDOS filesystem [|umsdos |Installs Linux on an MS-DOS partition

DOS-FAT filesystem |msdos |Accesses MS-DOS files

VFAT filesystem vfat Accesses Windows 95/98 files

NT filesystem ntfs Accesses Windows NT files

HPFS filesystem hpfs 0S/2 filesystem

/proc filesystem [proc Provides process information for ps

Device filesystem devfs dAirrlecatl(l)tfymate way of representing the files in the /dev

ISO 9660 filesystem |is09660 |Used by most CD-ROMs

Joliet filesystem 1509660 An. extension to the ISO 9660 filesystem that can handle
Unicode filenames

UDF filesystem udf The most modern CD-ROM filesystem

System V filesystem [sysv Accesses files from System V variants

Coherent filesystem |coherent|Accesses files from Coherent

UFSS filesystem ufs ggclz)e,szcstijllllzs4 t;rj(;rlr)l(.UFS filesystems, like those on SunOS,

BEFS filesystem bfs Accesses files on SCO Unixware

EFS filesystem efs Accesses files on older Irix versions

ADFS filesystem adfs Accesses files from Acorn partitions

AFFS filesystem affs Accesses files from standard AmigaOS filesystem partitions

Apple Mac filesystem [Afs Accesses files from Apple Macintosh

QNX4 filesystem qnx4 Accesses files from QNX4 partitions

JFES filesystem i1fs A filesystem for Flash-based devices

Novell filesystem ncpfs |Accesses files from a Novell server over the network

SMB filesystem smbfs |Accesses files from a Windows server over the network

Coda filesystem coda An advanced network file system, similar to NFS

RAM filesystem ramfs |A filesystem for RAM disks

Temporary filesystem [tmpfs |Another filesystem that is kept entirely in RAM

146

Chapter 6. Managing Filesystems, Swap Space, and Devices

Each filesystem type has its own attributes and limitations; for example, the MS-DOS
filesystem restricts filenames to eight characters plus a three-character extension and should
be used only to access existing MS-DOS floppies or partitions. For most of your work with
Linux, you'll use the Second Extended (exz2) filesystem, which was developed primarily for
Linux and supports 256-character filenames, a 32-terabyte maximum filesystem size, and
a slew of other goodies, or you will use the Reiser (reiserfs) or the Third Extended (ext3)
filesystem. Earlier Linux systems used the Extended filesystem (no longer supported) and
the Minix filesystem. (The Minix filesystem was originally used for several reasons. First of
all, Linux was originally cross-compiled under Minix. Also, Linus was quite familiar with
the Minix filesystem, and it was straightforward to implement in the original kernels.)
The Xia and Xenix filesystems available in older Linux kernels are no longer supported.

The main difference between the Second Extended filesystem and the Reiser filesystem is
the fact that the latter is journalled. Journalling is an advanced technique that keeps track of
the changes made to a filesystem, making it much easier (and faster!) to restore a corrupted
filesystem (e.g., after a system crash or a power failure). Another journalled filesystem is
the Third Extended filesystem, the successor to the Second Extended filesystem. This has
the advantage of being downward-compatible with the Second Extended filesystem, but
because it hasn't been around for long, it is not used as much as the Second Extended and
Reiser filesystems.

You will rarely need the ROM filesystem, which is very small, does not support write
operations, and is meant to be used in ramdisks at system configuration, startup time, or even
in EPROMS. Also in this group fits the Cram filesystem, which is used for ROMs as well and
compresses its contents. This is primarily meant for embedded devices where space is at
a premium.

The UMSDOS filesystem is used to install Linux under a private directory of an existing
MS-DOS partition. This is a good way for new users to try out Linux without repartitioning,
at the expense of poorer performance. The DOS-FAT filesystem, on the other hand, is used to
access MS-DOS files directly. Files on partitions created with Windows 95 or 98 can be
accessed via the VFAT filesystem, while the NTFS filesystem lets you access Windows NT
filesystems. The HPFS filesystem is used to access the OS/2 filesystem.

With the CVF-FAT extension to the DOS-FAT filesystem, it is possible to access partitions
that have been compressed with DoubleSpace/DriveSpace from Microsoft or Stacker from
Stac. See the file Documentation/filesystems/fat _cvf.txt in the Linux kernel sources for further
details.

/proc is a virtual filesystem; that is, no actual disk space is associated with it. See Section 5.6."

Like /proc, devfs is a virtual filesystem. It is meant as a replacement for the current /dev
directory (see Section 6.3 later in this chapter) and has the advantage that the special files
there do not have to be created manually by the system administrator, but are rather created
automatically and on demand by the kernel.

! Note that the /proc filesystem under Linux is not the same format as the /proc filesystem under SVR4 (say,
Solaris 2.x). Under SVR4, each running process has a single "file" entry in /proc, which can be opened and
treated with certain ioctl() calls to obtain process information. On the contrary, Linux provides most of its
information in /proc through read() and write() requests.

147

Chapter 6. Managing Filesystems, Swap Space, and Devices

The ISO 9660 filesystem (previously known as the High Sierra Filesystem and abbreviated
hsfs on other Unix systems) is used by most CD-ROMs. Like MS-DOS, this filesystem type
restricts filename length and stores only limited information about each file. However, most
CD-ROMs provide the Rock Ridge Extensions to ISO 9660, which allow the kernel
filesystem driver to assign long filenames, ownerships, and permissions to each file. The net
result is that accessing an ISO 9660 CD-ROM under MS-DOS gives you 8.3-format
filenames, but under Linux gives you the "true," complete filenames.

In addition, Linux now supports the Microsoft Joliet extensions to ISO 9660, which can
handle long filenames made up of Unicode characters. This is not widely used now but may
become valuable in the future because Unicode has been accepted internationally as the
standard for encoding characters of scripts worldwide.

Recently, Linux also received support for UDF, a filesystem that is meant for use with CD-
RWs and DVDs.

Next, we have six filesystem types for other platforms. Linux supports the formats that are
popular on those platforms in order to allow dual-booting and other interoperation. The
systems in question are UFS, EFS, BFS, System V, and Coherent. (The latter two are actually
handled by the same kernel driver, with slightly different parameters for each.) If you have
filesystems created in one of these formats under a foreign operating system, you'll be able to
access the files from Linux.

Finally, there is a slew of filesystems for accessing data on partitions; these are created by
operating systems other than the DOS and Unix families. Those filesystems support the Acorn
Disk Filing System (ADFS), the AmigaOS filesystems (no floppy disk support except on
Amigas), the Apple Mac HFS, and the QNX4 filesystem. Most of the specialized filesystems
are useful only on certain hardware architectures; for instance, you won't have hard disks
formatted with the Amiga FFS filesystem in an Intel machine. If you need one of those
drivers, please read the information that comes with them; some are only in an experimental
state.

Besides these filesystems that are used to access local hard disks, there are also network
filesystems for accessing remote resources. Covering these is beyond the scope of this book;
we have to point you to the Linux Network Administrator's Guide by Olaf Kirch and Terry
Dawson (O'Reilly) instead.

6.1.2 Mounting Filesystems

In order to access any filesystem under Linux, you must mount it on a certain directory. This
makes the files on the filesystem appear as though they reside in the given directory, allowing
you to access them.

Before we tell you how to mount filesystems, we should also mention that some distributions
come with automounting setups that require you to simply load a diskette or CD into the
respective drive and access it like you would on other platforms. For everybody, there are
times, however, when you need to know how to mount and unmount media directly. We'll
cover how to set up automounting yourself later.

148

Chapter 6. Managing Filesystems, Swap Space, and Devices

The mount command is used to do this and usually must be executed as root. (As we'll see
later, ordinary users can use mount if the device is listed in the /etc/fstab file.) The format of
this command is:

mount -t type device mount-point

where type is the type name of the filesystem as given in Table 6-1, device is the physical
device where the filesystem resides (the device file in /dev), and mount-point is the
directory on which to mount the filesystem. You have to create the directory before issuing
mount.

For example, if you have a Second Extended filesystem on the partition /dev/hda2 and wish to
mount it on the directory /mnt, use the command:

mount -t ext2 /dev/hda2 /mnt

If all goes well you should be able to access the filesystem under /mnt. Likewise, to mount a
floppy that was created on a Windows system and therefore is in DOS format, you use the
command:

mount -t msdos /dev/fd0 /mnt

This makes the files available on an MS-DOS-format floppy under /mnt. Note that using
msdos means that you use the old DOS format that is limited to filenames of 8 plus 3
characters. If you use vfat instead, you get the newer format that was introduced with
Windows 95. Of course, the floppy or hard disk needs to be written with that format as well.

There are many options to the mount command, which can be specified with the -o switch.
For example, the MS-DOS and ISO 9660 filesystems support "autoconversion" of text files
from MS-DOS format (which contain CR-LF at the end of each line), to Unix format (which
contain merely a newline at the end of each line). Using a command, such as:

mount -o conv=auto -t msdos /dev/fd0 /mnt

turns on this conversion for files that don't have a filename extension that could be associated
with a binary file (such as .exe, .bin, and so forth).

One common option to mount is -o ro (or, equivalently, -#), which mounts the filesystem as
read-only. All write access to such a filesystem is met with a "permission denied" error.
Mounting a filesystem as read-only is necessary for media like CD-ROMs that are
nonwritable. You can successfully mount a CD-ROM without the -7 option, but you'll get the
annoying warning message:

mount: block device /dev/cdrom is write-protected, mounting read-only
Use a command, such as:

mount -t is09660 -r /dev/cdrom /mnt

instead. This is also necessary if you are trying to mount a floppy that has the write-protect
tab in place.

149

Chapter 6. Managing Filesystems, Swap Space, and Devices

The mount manual page lists all available mounting options. Not all are of immediate interest,
but you might have a need for some of them, someday. A useful variant of using mount is
mount -a, which mounts all filesystems listed in /etc/fstab except those marked with the
noauto option.

The inverse of mounting a filesystem is, naturally, unmounting it. Unmounting a filesystem
has two effects: it synchronizes the system's buffers with the actual contents of the filesystem
on disk, and it makes the filesystem no longer available from its mount point. You are then
free to mount another filesystem on that mount point.

Unmounting is done with the umount command (note that the first "n" is missing from the
word "unmount"), as in:

umount /dev/£d0

to unmount the filesystem on /dev/fd(). Similarly, to unmount whatever filesystem is currently
mounted on a particular directory, use a command, such as:

umount /mnt

It is important to note that removable media, including floppies and CD-ROMs, should not be
removed from the drive or swapped for another disk while mounted. This causes the system's
information on the device to be out of sync with what's actually there and could lead to no end
of trouble. Whenever you want to switch a floppy or CD-ROM, unmount it first, using the
umount command, insert the new disk, and then remount the device. Of course, with a CD-
ROM or a write-protected floppy, there is no way the device itself can get out of sync, but you
could run into other problems. For example, some CD-ROM drives won't let you eject the
disk until it is unmounted.

Reads and writes to filesystems on floppies are buffered in memory as they are for hard
drives. This means that when you read or write data to a floppy, there may not be any
immediate drive activity. The system handles I/O on the floppy asynchronously and reads or
writes data only when absolutely necessary. So if you copy a small file to a floppy, but the
drive light doesn't come on, don't panic; the data will be written eventually. You can use the
sync command to force the system to write all filesystem buffers to disk, causing a physical
write of any buffered data. Unmounting a filesystem makes this happen as well.

If you wish to allow mortal users to mount and unmount certain devices, you have two
options. The first option is to include the user option for the device in /etc/fstab (described
later in this section). This allows any user to use the mount and umount command for a given
device. Another option is to use one of the mount frontends available for Linux. These
programs run setuid root and allow ordinary users to mount certain devices. In general, you
wouldn't want normal users mounting and unmounting a hard-drive partition, but you could
be more lenient about the use of CD-ROM and floppy drives on your system.

Quite a few things can go wrong when attempting to mount a filesystem. Unfortunately, the
mount command will give you the same error message in response to a number of problems:

mount: wrong fs type, /dev/cdrom already mounted, /mnt busy, or other error

150

Chapter 6. Managing Filesystems, Swap Space, and Devices

wrong fs type is simple enough: this means that you may have specified the wrong type
to mount. If you don't specify a type, mount tries to guess the filesystem type from the
superblock (this works only for minix, ext2, and is09660). If mount still cannot determine the
type of the filesystem, it tries all the types for which drivers are included in the kernel (as
listed in /proc/filesystems). If this still does not lead to success, mount fails. device
already mounted means just that: the device is already mounted on another directory.
You can find out what devices are mounted, and where, using the mount command with no
arguments:

rutabaga# mount

/dev/hda2 on / type ext2 (rw)
/dev/hda3 on /windows type vfat (rw)
/dev/cdrom on /cdrom type is09660 (ro)
/proc on /proc type proc (rw,none)

Here, we see two hard-drive partitions, one of type exz2 and the other of type vfat, a CD-ROM
mounted on /cdrom, and the /proc filesystem. The last field of each line (for example, (rw))
lists the options under which the filesystem is mounted. More on these soon. Note that the
CD-ROM device is mounted in /cdrom. If you use your CD-ROM often, it's convenient to
create a special directory such as /cdrom and mount the device there. /mnt is generally used to
temporarily mount filesystems such as floppies.

The error mount-point busy is rather odd. Essentially, it means some activity is taking
place under mount-point that prevents you from mounting a filesystem there. Usually, this
means that an open file is under this directory, or some process has its current working
directory beneath mount-point. When using mount, be sure your root shell is not within
mount-point; do a cd / to get to the top-level directory. Or, another filesystem could be
mounted with the same mount-point. Use mount with no arguments to find out.

Of course, other error isn't very helpful. There are several other cases in which mount
could fail. If the filesystem in question has data or media errors of some kind, mount may
report it is unable to read the filesystem's superblock, which is (under Unix-like filesystems)
the portion of the filesystem that stores information on the files and attributes for the
filesystem as a whole. If you attempt to mount a CD-ROM or floppy drive, and there's no CD-
ROM or floppy in the drive, you will receive an error message, such as:

mount: /dev/cdrom is not a valid block device

Floppies are especially prone to physical defects (more so than you might initially think), and
CD-ROMs suffer from dust, scratches, and fingerprints, as well as being inserted upside-
down. (If you attempt to mount your Stan Rogers CD as ISO 9660 format, you will likely run
into similar problems.)

Also, be sure the mount point you're trying to use (such as /mnt) exists. If not, you can simply
create it with the mkdir command.

If you have problems mounting or accessing a filesystem, data on the filesystem may be

corrupt. Several tools help repair certain filesystem types under Linux; see Section 6.1.5 later
in this chapter.

151

Chapter 6. Managing Filesystems, Swap Space, and Devices

The system automatically mounts several filesystems when the system boots. This is handled
by the file /etc/fstab, which includes an entry for each filesystem that should be mounted at
boot time. Each line in this file is of the format:

device mount-point type options
Here, device, mount-point, and type are equivalent to their meanings in the mount
command, and options is a comma-separated list of options to use with the -o switch to

mount.

A sample /etc/fstab is shown here:

device directory type options
/dev/hda?2 / ext?2 defaults
/dev/hda3 /windows vfat defaults
/dev/cdrom /cdrom 1509660 ro

/proc /proc proc none
/dev/hdal none swap sw

The last line of this file specifies a swap partition. This is described in Section 6.2 later in this
chapter.

The mount(8) manual page lists the possible values for options; if you wish to specify more
than one option, you can list them with separating commas and no whitespace, as in:

/dev/cdrom /cdrom 1509660 ro,user

The user option allows users other than root to mount the filesystem. If this option is
present, a user can execute a command, such as:

mount /cdrom

to mount the device. Note that if you specify only a device or mount point (not both) to
mount, it looks up the device or mount point in /etc/fstab and mounts the device with
the parameters given there. This allows you to mount devices listed in /etc/fstab with ease.

The option defaults should be used for most filesystems; it enables a number of other
options, such as rw (read-write access), async (buffer I/O to the filesystem in memory
asynchronously), and so forth. Unless you have a specific need to modify one of these
parameters, use defaults for most filesystems and ro for read-only devices such as CD-
ROMs. Another potentially useful option is umask, which lets you set the default mask for
the permission bits, something that is especially useful with some foreign filesystems.

The command mount -a will mount all filesystems listed in /etc/fstab. This command is
executed at boot time by one of the scripts found in /etc/rc.d, such as rc.sysinit (or wherever
your distribution stores its configuration files). This way, all filesystems listed in /etc/fstab
will be available when the system starts up; your hard-drive partitions, CD-ROM drive, and
so on will all be mounted.

There is an exception to this: the root filesystem. The root filesystem, mounted on /, usually
contains the file /etc/fstab as well as the scripts in /efc/rc.d. In order for these to be available,

152

Chapter 6. Managing Filesystems, Swap Space, and Devices

the kernel itself must mount the root filesystem directly at boot time. The device containing
the root filesystem is coded into the kernel image and can be altered using the rdev command
(see Section 5.2.1 in Chapter 5). While the system boots, the kernel attempts to mount this
device as the root filesystem, trying several filesystem types in succession. If at boot time
the kernel prints an error message, such as:

VFS: Unable to mount root fs
one of the following has happened:

e The root device coded into the kernel is incorrect.

e The kernel does not have support compiled in for the filesystem type of the root
device. (See Section 7.4.2 in Chapter 7 for more details. This is usually relevant only
if you build your own kernel.)

e The root device is corrupt in some way.

In any of these cases, the kernel can't proceed and panics. See Section 8.6 in Chapter 8 for
clues on what to do in this situation. If filesystem corruption is the problem, this can usually
be repaired; see Section 6.1.5 later in this chapter.

A filesystem does not need to be listed in /etc/fstab in order to be mounted, but it does need to
be listed there in order to be mounted "automatically" by mount -a, or to use the user mount
option.

6.1.3 Automounting Devices

If you need to access a lot of different filesystems, especially networked ones, you might be
interested in a special feature in the Linux kernel: the automounter. This is a combination of
kernel functionality, a daemon, and some configuration files that automatically detect when
somebody wants to access a certain filesystem and mounts the filesystem transparently. When
the filesystem is not used for some time, the automounter automatically unmounts it in order
to save resources like memory and network throughput.

If you want to use the automounter, you first need to turn this feature on when building your
kernel. (See Section 7.4.2 in Chapter 7 for more details.) You will also need to enable the
NEFS option.

Next, you need to start the automount daemon. Because this feature is quite new, your
distribution might not yet have it. Look for the directory /usr/lib/autofs. If it is not there, you
will need to get the autofs package from your friendly Linux archive and compile and install it
according to the instructions.

Note that there are two versions of automount support: Version 3 and Version 4. Version 3 is
the one still contained in most distributions, so that's what we describe here.

You can automount filesystems wherever you like, but for simplicity's sake, we will assume
here that you want to automount all filesystems below one directory that we will call
/automount here. If you want your automount points to be scattered over your filesystem, you
will need to use multiple automount daemons.

153

Chapter 6. Managing Filesystems, Swap Space, and Devices

If you have compiled the autofs package yourself, it might be a good idea to start by copying
the sample configuration files that you can find in sample directory, and adapt them to your
needs. To do this, copy the files sample/auto.master and sample/auto.misc into the /etc
directory, and the file sample/rc.autofs under the name autofs wherever your distribution
stores its boot scripts. We'll assume here that you use /etc/init.d.

The first configuration file to edit is /etc/auto.master. This lists all the directories (the so-
called mount points) below which the automounter should mount partitions. Because we have
decided to use only one partition in this chapter's example, we will need to make only one
entry here. The file could look like this:

/automount /etc/auto.misc

This file consists of lines with two entries each, separated by whitespace. The first entry
specifies the mount point, and the second entry names a so-called map file that specifies how
and where to mount the devices or partitions to be automounted. You need one such map file
for each mount point.

In our case, the file /etc/auto.misc looks like the following:

cd -fstype=1s09660, ro :/dev/scd0
floppy -fstype=auto :/dev/£d0

Again, this file consists of one-line entries that each specify one particular device or partition
to be automounted. The lines have two mandatory and one optional field, separated by
whitespaces. The first value is mandatory and specifies the directory onto which the device or
partition of this entry is automounted. This value is appended to the mount point so that the
CD-ROM will be automounted onto /automount/cd.

The second value is optional and specifies flags to be used for the mount operation. These are
equivalent to those for the mount command itself, with the exception that the type is specified
with the option -fs#ype= instead of -z.

Finally, the third value specifies the partition or device to be mounted. In our case, we specify
the first SCSI CD-ROM drive and the first floppy drive, respectively. The colon in front of
the entry is mandatory; it separates the host part from the device/directory part, just as with
mount. Because those two devices are on a local machine, there is nothing to the left of the
colon. If we wanted to automount the directory sources from the NFS server
sourcemaster, we would specify something, such as:

sources -fstype=nfs, soft sourcemaster:/sources

After editing the configuration files to reflect your system, you can start the automount
daemon by issuing (replace the path with the path that suits your system):

tigger# /etc/init.d/autofs start

Because this command is very taciturn, you should check whether the automounter has really
started. One way to do this is to issue:

tigger# /etc/init.d/autofs status

154

Chapter 6. Managing Filesystems, Swap Space, and Devices

but it is difficult to determine from the output whether the automounter is really running.
Your best bet, therefore, is to check whether the automount process exists:

tigger# ps aux | grep automount

If this command shows the automount process, everything should be all right. If it doesn't,
you need to check your configuration files again. It could also be the case that the necessary
kernel support is not available: either the automount support is not in your kernel, or you have
compiled it as a module but not installed this module. If the latter is the case, you can fix the
problem by issuing:

tigger# modprobe autofs

If that doesn't work, you need to use:

tigger# modprobe autofs4

instead.” When your automounter works to your satisfaction, you might want to put the
modprobe call as well as the autofs call in one of your system's startup configuration files like
letc/re.local, /etc/init.d/boot.local, or whatever your distribution uses.

If everything is set up correctly, all you need to do is access some directory below the mount
point, and the automounter will mount the appropriate device or partition for you. For
example, if you type:

tiggers$ 1ls /automount/cd

the automounter will automatically mount the CD-ROM so that Is can list its contents. The
only difference between normal and automounting is that with automounting you will notice a
slight delay before the output comes.

In order to conserve resources, the automounter unmounts a partition or device if it has not
been accessed for a certain amount of time (the default is five minutes).

The automounter supports a number of advanced options; for example, you do not need to
read the map table from a file but can also access system databases or even have the
automounter run a program and use this program's output as the mapping data. See the
manpages for autofs(5) and automount(8) for further details.

6.1.4 Creating Filesystems

You can create a filesystem using the mkfs command. Creating a filesystem is analogous to
"formatting" a partition or floppy, allowing it to store files.

Each filesystem type has its own mkfs command associated with it — for example, MS-DOS
filesystems may be created using mkfs.msdos, Second Extended filesystems using mkfs.ext2,

2 We'll cover the modprobe command in the next chapter.

155

Chapter 6. Managing Filesystems, Swap Space, and Devices

and so on. The program mkfs itself is a frontend that creates a filesystem of any type by
executing the appropriate version of mkfs for that type.’

When you installed Linux, you may have created filesystems by hand using a command such
as mke2fs. (If not, the installation software created the filesystems for you.) In fact, mke2fs is
equivalent to mkfs.ext2. The programs are the same (and on many systems, one is a symbolic
link to the other), but the mkfs. Fs-type filename makes it easier for mkfs to execute the
appropriate filesystem-type-specific program. If you don't have the mkfs frontend, you can use
mke2fs or mkfs.ext2 directly.

Assuming that you're using the mkfs frontend, you can create a filesystem using this
command:

mkfs -t type device

where type is the type of filesystem to create, given in Table 6-1, and device is the device
on which to create the filesystem (such as /dev/fd0 for a floppy).

For example, to create an ext2 filesystem on a floppy, you use this command:

mkfs -t ext2 /dev/£fd0
You could create an MS-DOS floppy using -t msdos instead.

We can now mount the floppy, as described in the previous section, copy files to it, and so
forth. Remember to unmount the floppy before removing it from the drive.

Creating a filesystem deletes all data on the corresponding physical device (floppy, hard-drive
partition, whatever). mkfs usually does not prompt you before creating a filesystem, so be
absolutely sure you know what you're doing.

Creating a filesystem on a hard-drive partition is done exactly as shown earlier, except that
you would use the partition name, such as /dev/hdaZ2, as the device. Don't try to create a
filesystem on a device, such as /dev/hda. This refers to the entire drive, not just a single
partition on the drive. You can create partitions using fdisk, as described in Section 3.1.3.

You should be especially careful when creating filesystems on hard-drive partitions. Be
absolutely sure that the device and size arguments are correct. If you enter the wrong
device, you could end up destroying the data on your current filesystems, and if you specify
the wrong s i ze, you could overwrite data on other partitions. Be sure that s i ze corresponds
to the partition size as reported by Linux fdisk.

When creating filesystems on floppies, it's usually best to do a low-level format first. This
lays down the sector and track information on the floppy so that its size can be automatically
detected using the devices /dev/fd0 or /dev/fdl. One way to do a low-level format is with the

? Under Linux the mkfs command historically created a Minix filesystem. On newer Linux systems, mkfs is a
frontend for any filesystem type, and Minix filesystems are created using mkfs. minix.

156

Chapter 6. Managing Filesystems, Swap Space, and Devices

MS-DOS FORMAT command; another way is with the Linux program fdformat.* For
example, to format the floppy in the first floppy drive, use the command:

rutabaga# fdformat /dev/£d0

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done

Verifying ... done

Using the -n option with fdformat will skip the verification step.

Each filesystem-specific version of mkfs supports several options you might find useful. Most
types support the -¢ option, which causes the physical media to be checked for bad blocks
while creating the filesystem. If bad blocks are found, they are marked and avoided when
writing data to the filesystem. In order to use these type-specific options, include them after
the - t ype option to mkfs, as follows:

mkfs -t type -c device blocks

To determine what options are available, see the manual page for the type-specific version of
mkfs. (For example, for the Second Extended filesystem, see mke2fs.)

You may not have all available type-specific versions of mkfs installed. If this is the case,
mkfs will fail when you try to create a filesystem of a type for which you have no mifs. t ype.
Many filesystem types supported by Linux have a corresponding mkfs.type available,
somewhere.

If you run into trouble using mkfs, it's possible that Linux is having problems accessing the
physical device. In the case of a floppy, this might just mean a bad floppy. In the case of a
hard drive, it could be more serious; for example, the disk device driver in the kernel might be
having problems reading your drive. This could be a hardware problem or a simple matter of
your drive geometry being specified incorrectly. See the manual pages for the various
versions of mkfs, and read the sections in Chapter 3 on troubleshooting installation problems.
They apply equally here.’

6.1.5 Checking and Repairing Filesystems

It is sometimes necessary to check your Linux filesystems for consistency and repair them if
there are any errors or if you lose data. Such errors commonly result from a system crash or
loss of power, making the kernel unable to sync the filesystem buffer cache with the contents
of the disk. In most cases, such errors are relatively minor. However, if the system were to
crash while writing a large file, that file may be lost and the blocks associated with it marked
as "in use," when in fact no file entry is corresponding to them. In other cases, errors can be
caused by accidentally writing data directly to the hard-drive device (such as /dev/hda), or to
one of the partitions.

The program fsck is used to check filesystems and correct any problems. Like mkfs, fsck is a
frontend for a filesystem-type-specific fsck.cype, such as fsck.ext?2 for Second Extended

* Debian users should use superformat instead.
5 Also, the procedure for making an ISO 9660 filesystem for a CD-ROM is more complicated than simply
formatting a filesystem and copying files. See the CD-Writing HOWTO for more details.

157

Chapter 6. Managing Filesystems, Swap Space, and Devices

filesystems. (As with mkfs.ext2, fsck.ext2 is a symbolic link to e2fsck, either of which you can
execute directly if the fsck frontend is not installed.)

Use of fsck is quite simple; the format of the command is:

fsck -t type device

where type is the type of filesystem to repair, as given in Table 6-1, and device is
the device (drive partition or floppy) on which the filesystem resides.

For example, to check an ext2 filesystem on /dev/hda2, you use:

rutabaga# fsck -t ext2 /dev/hda2

Parallelizing fsck version 1.06 (7-Oct-96)

e2fsck 1.06, 7-0Oct-96 for EXT2 FS 0.5b, 95/08/09

/dev/hda2 is mounted. Do you really want to continue (y/n)? y

/dev/hda2 was not cleanly unmounted, check forced.
Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts.

Pass 5: Checking group summary information.

Free blocks count wrong for group 3 (3331, counted=3396). FIXED
Free blocks count wrong for group 4 (1983, counted=2597). FIXED
Free blocks count wrong (29643, counted=30341). FIXED

Inode bitmap differences: -8280. FIXED

Free inodes count wrong for group #4 (1405, counted=1406). FIXED
Free inodes count wrong (34522, counted=34523). FIXED

/dev/hda2: ***** FILE SYSTEM WAS MODIFIED ****x
/dev/hda2: ***** REBOOT LINUX *****
/dev/hda2: 13285/47808 files, 160875/191216 blocks

First of all, note that the system asks for confirmation before checking a mounted filesystem.
If any errors are found and corrected while using fsck, you'll have to reboot the system if
the filesystem is mounted. This is because the changes made by fsck may not be propagated
back to the system's internal knowledge of the filesystem layout. In general, it's not a good
idea to check mounted filesystems.

As we can see, several problems were found and corrected, and because this filesystem was
mounted, the system informed us that the machine should be rebooted.

How can you check filesystems without mounting them? With the exception of the root
filesystem, you can simply umount any filesystems before running fsck on them. The root
filesystem, however, can't be unmounted while running the system. One way to check your
root filesystem while it's unmounted is to use a boot/root floppy combination, such as the
installation floppies used by your Linux distribution. This way, the root filesystem is
contained on a floppy, the root filesystem (on your hard drive) remains unmounted, and you
can check the hard-drive root filesystem from there. See Section 8.6 in Chapter 8 for more
details about this.

Another way to check the root filesystem is to mount it as read-only. This can be done using

the option ro from the LILO boot prompt (see Section 5.2.2.3 in Chapter 5). However, other
parts of your system configuration (for example, the programs executed by /etc/init at boot

158

Chapter 6. Managing Filesystems, Swap Space, and Devices

time) may require write access to the root filesystem, so you can't boot the system normally or
these programs will fail. To boot the system with the root filesystem mounted as read-only
you might want to boot the system into single-user mode as well (using the boot option
single). This prevents additional system configuration at boot time; you can then check
the root filesystem and reboot the system normally.

To cause the root filesystem to be mounted as read-only, you can use either the ro boot
option, or rdev to set the read-only flag in the kernel image itself.

Many Linux systems automatically check the filesystems at boot time. This is usually done by
executing fsck from /etc/rc.d/rc.sysinit. When this is done, the system usually mounts the root
filesystem initially as read-only, runs fsck to check it, and then runs the command:

mount -w -o remount /

The -0 remount option causes the given filesystem to be remounted with the new parameters;
the -w option (equivalent to -o rw) causes the filesystem to be mounted as read-write. The net
result is that the root filesystem is remounted with read-write access.

When fsck is executed at boot time, it checks all filesystems other than root before they are
mounted. Once fsck completes, the other filesystems are mounted using mount. Check out the
files in /etc/rc.d, especially re.sysinit (if present on your system), to see how this is done. If
you want to disable this feature on your system, comment out the lines in the appropriate
/etc/re.d file that executes fsck.

You can pass options to the type-specific fsck. Most types support the option -a, which
automatically confirms any prompts that fsck. - ype may display; -¢, which does bad-block
checking, as with mkfs; and -v, which prints verbose information during the check operation.
These options should be given after the -# ¢ ype argument to fsck, as in:

fsck -t type -v device
to run fsck with verbose output.
See the manual pages for fsck and e2fsck for more information.

Not all filesystem types supported by Linux have a fsck variant available. To check and repair
MS-DOS filesystems, you should use a tool under MS-DOS, such as the Norton Utilities, to
accomplish this task. You should be able to find versions of fsck for the Second Extended
filesystem, Minix filesystem, and Xia filesystem at least.

In Section 8.6 in Chapter 8, we provide additional information on checking filesystems and
recovering from disaster. fsck will by no means catch and repair every error to your
filesystems, but most common problems should be handled. If you delete an important file,
there is currently no easy way to recover it — fsck can't do that for you. There is work
underway to provide an "undelete" utility in the Second Extended filesystem. Be sure to keep
backups, or use rm -i, which always prompts you before deleting a file.

159

Chapter 6. Managing Filesystems, Swap Space, and Devices

6.2 Managing Swap Space

Swap space is a generic term for disk storage used to increase the amount of apparent memory
available on the system. Under Linux, swap space is used to implement paging, a process
whereby memory pages are written out to disk when physical memory is low and read back
into physical memory when needed (a page is 4096 bytes on Intel x86 systems; this value can
differ on other architectures). The process by which paging works is rather involved, but it is
optimized for certain cases. The virtual memory subsystem under Linux allows memory pages
to be shared between running programs. For example, if you have multiple copies of Emacs
running simultaneously, only one copy of the Emacs code is actually in memory. Also, text
pages (those pages containing program code, not data) are usually read-only, and therefore not
written to disk when swapped out. Those pages are instead freed directly from main memory
and read from the original executable file when they are accessed again.

Of course, swap space cannot completely make up for a lack of physical RAM. Disk access is
much slower than RAM access, by several orders of magnitude. Therefore, swap is useful
primarily as a means to run a number of programs simultaneously that would not otherwise fit
into physical RAM; if you are switching between these programs rapidly you'll notice a lag as
pages are swapped to and from disk.

At any rate, Linux supports swap space in two forms: as a separate disk partition or a file
somewhere on your existing Linux filesystems. You can have up to eight swap areas, with
each swap area being a disk file or partition up to 2 GB in size (again, these values can differ
on non-Intel systems). You math whizzes out there will realize that this allows up to 16 GB of
swap space. (If anyone has actually attempted to use this much swap, the authors would love
to hear about it, whether you're a math whiz or not.)

Note that using a swap partition can yield better performance because the disk blocks are
guaranteed to be contiguous. In the case of a swap file, however, the disk blocks may be
scattered around the filesystem, which can be a serious performance hit in some cases. Many
people use a swap file when they must add additional swap space temporarily — for example,
if the system is thrashing because of lack of physical RAM and swap. Swap files are a good
way to add swap on demand.

Nearly all Linux systems utilize swap space of some kind — usually a single swap partition.
In Chapter 3, we explained how to create a swap partition on your system during the Linux
installation procedure. In this section we describe how to add and remove swap files and
partitions. If you already have swap space and are happy with it, this section may not be of
interest to you.

How much swap space do you have? The free command reports information on system-
memory usage:

rutabaga% free

total used free shared buffers cached
Mem: 127888 126744 1144 27640 1884 51988
=/+ buffers/cache: 72872 55016
Swap: 130748 23916 106832

All the numbers here are reported in 1024-byte blocks. Here, we see a system with 127,888
blocks (about 127 MB) of physical RAM, with 126,744 (about 126 MB) currently in use.

160

Chapter 6. Managing Filesystems, Swap Space, and Devices

Note that your system actually has more physical RAM than that given in the "total" column;
this number does not include the memory used by the kernel for its own sundry needs.

The "shared" column lists the amount of physical memory shared between multiple processes.
Here, we see that about 27 MB of pages are being shared, which means that memory is being
utilized well. The "buffers" column shows the amount of memory being used by the kernel
buffer cache. The buffer cache (described briefly in the previous section) is used to speed up
disk operations by allowing disk reads and writes to be serviced directly from memory. The
buffer cache size will increase or decrease as memory usage on the system changes; this
memory is reclaimed if applications need it. Therefore, although we see that 126 MB of
system memory is in use, not all (but most) of it is being used by application programs. The
"cache" column indicates how many memory pages the kernel has cached for faster access
later.

Because the memory used for buffers and cache can easily be reclaimed for use by
applications, the second line (-/+ buffers/cache) provides an indication of the memory
actually used by applications (the "used" column) or available to applications (the "free"
column). The sum of the memory used by buffers and cache reported in the first line is
subtracted from the total used memory and added to the total free memory to give the two
figures on the second line.

In the third line, we see the total amount of swap, 130,748 blocks (about 128 MB). In this
case, only very little of the swap is being used; there is plenty of physical RAM available. If
additional applications were started, larger parts of the buffer cache memory would be used to
host them. Swap space is generally used as a last resort when the system can't reclaim
physical memory in other ways.

Note that the amount of swap reported by frree is somewhat less than the total size of your
swap partitions and files. This is because several blocks of each swap area must be used to
store a map of how each page in the swap area is being utilized. This overhead should be
rather small; only a few kilobytes per swap area.

If you're considering creating a swap file, the df command gives you information on the
amount of space remaining on your various filesystems. This command prints a list of
filesystems, showing each one's size and what percentage is currently occupied.

6.2.1 Creating Swap Space

The first step in adding additional swap is to create a file or partition to host the swap area. If
you wish to create an additional swap partition, you can create the partition using the fdisk
utility, as described in Section 3.1.3.

To create a swap file, you'll need to open a file and write bytes to it equaling the amount of
swap you wish to add. One easy way to do this is with the dd command. For example, to
create a 32-MB swap file, you can use the command:

dd if=/dev/zero of=/swap bs=1024 count=32768

This will write 32768 blocks (32 MB) of data from /dev/zero to the file /swap. (/dev/zero is a
special device in which read operations always return null bytes. It's something like the

161

Chapter 6. Managing Filesystems, Swap Space, and Devices

inverse of /dev/null.) After creating a file of this size, it's a good idea to use the sync command
to sync the filesystems in case of a system crash.

Once you have created the swap file or partition, you can use the mkswap command to
"format" the swap area. As described in Section 3.1.4, the format of the mkswap command is:

mkswap -c device size

where device is the name of the swap partition or file, and si ze is the size of the swap area
in blocks (again, one block is equal to one kilobyte). You normally do not need to specify this
when creating a swap area because mkswap can detect the partition size on its own. The -¢
switch is optional and causes the swap area to be checked for bad blocks as it is formatted.

For example, for the swap file created in the previous example, you would use the command:

mkswap -c /swap 8192

If the swap area is a partition, you would substitute the name of the partition (such as
/dev/hda3) and the size of the partition, also in blocks.

If you are using a swap file (and not a swap partition), you need to change its permissions
first, like this:

chmod 0600 /swap

After running mkswap on a swap file, use the sync command to ensure the format information
has been physically written to the new swap file. Running sync is not necessary when
formatting a swap partition.

6.2.2 Enabling the Swap Space

In order for the new swap space to be utilized, you must enable it with the swapon command.
For example, after creating the previous swap file and running mkswap and sync, we could
use the command:

swapon /swap

This adds the new swap area to the total amount of available swap; use the firee command to
verify that this is indeed the case. If you are using a new swap partition, you can enable it with
a command, such as:

swapon /dev/hda3
if /dev/hda3 is the name of the swap partition.

Like filesystems, swap areas are automatically enabled at boot time using the swapon -a
command from one of the system startup files (usually in /etc/rc.d/rc.sysinif). This command
looks in the file /etc/fstab, which, as you'll remember from Section 6.1.2 earlier in this
chapter, includes information on filesystems and swap areas. All entries in /etc/fstab with the
options field set to sw are enabled by swapon -a.

162

Chapter 6. Managing Filesystems, Swap Space, and Devices

Therefore, if /etc/fstab contains the entries:

device directory type options
/dev/hda3 none swap sw
/swap none swap sw

the two swap areas /dev/hda3 and /swap will be enabled at boot time. For each new swap area,
you should add an entry to /etc/fstab.

6.2.3 Disabling Swap Space

As is usually the case, undoing a task is easier than doing it. To disable swap space, simply
use the command:

swapoff device

where device is the name of the swap partition or file that you wish to disable. For example,
to disable swapping on the device /dev/hda3, use the command:

swapoff /dev/hda3

If you wish to disable a swap file, you can simply remove the file, using rm, after using
swapoff. Don't remove a swap file before disabling it; this can cause disaster.

If you have disabled a swap partition using swapoff, you are free to reuse that partition as you
see fit: remove it using fdisk or your preferred repartitioning tool.

Also, if there is a corresponding entry for the swap area in /etc/fstab, remove it. Otherwise,
you'll get errors when you next reboot the system and the swap area can't be found.

6.3 Device Files

Device files allow user programs to access hardware devices on the system through the
kernel. They are not "files" per se, but look like files from the program's point of view: you
can read from them, write to them, mmap() onto them, and so forth. When you access such a
device "file," the kernel recognizes the I/O request and passes it a device driver, which
performs some operation, such as reading data from a serial port or sending data to a sound
card.

Device files (although they are inappropriately named, we will continue to use this term)
provide a convenient way to access system resources without requiring the applications
programmer to know how the underlying device works. Under Linux, as with most Unix
systems, device drivers themselves are part of the kernel. In Section 7.4.2 in Chapter 7, we
show you how to build your own kernel, including only those device drivers for the hardware
on your system.

Device files are located in the directory /dev on nearly all Unix-like systems. Each device on
the system should have a corresponding entry in /dev. For example, /dev/ttyS0 corresponds to
the first serial port, known as COM1 under MS-DOS; /dev/hda2 corresponds to the second
partition on the first IDE drive. In fact, there should be entries in /dev for devices you do not
have. The device files are generally created during system installation and include every

163

Chapter 6. Managing Filesystems, Swap Space, and Devices

possible device driver. They don't necessarily correspond to the actual hardware on your
system.

A number of pseudo-devices in /dev don't correspond to any actual peripheral. For example,
/dev/null acts as a byte sink; any write request to /dev/null will succeed, but the data written
will be ignored. Similarly, we've already demonstrated the use of /dev/zero to create a swap
file; any read request on /dev/zero simply returns null bytes.

When using /s -/ to list device files in /dev, you'll see something like the following:

brw-rw---- 1 root disk 3, 0 May 19 1994 /dev/hda

This is /dev/hda, which corresponds to the first IDE drive. First of all, note that the first letter
of the permissions field is b, which means this is a block device file. (Recall that normal files
have an - in this first column, directories a d, and so on.) Device files are denoted either by b,
for block devices, or ¢, for character devices. A block device is usually a peripheral such as a
hard drive: data is read and written to the device as entire blocks (where the block size is
determined by the device; it may not be 1024 bytes as we usually call "blocks" under Linux),
and the device may be accessed randomly. In contrast, character devices are usually read or
written sequentially, and I/O may be done as single bytes. An example of a character device is
a serial port.

Also, note that the size field in the Is -/ listing is replaced by two numbers, separated by a
comma. The first value is the major device number and the second is the minor device
number. When a device file is accessed by a program, the kernel receives the I/O request in
terms of the major and minor numbers of the device. The major number generally specifies a
particular driver within the kernel, and the minor number specifies a particular device handled
by that driver. For example, all serial port devices have the same major number, but different
minor numbers. The kernel uses the major number to redirect an I/O request to the appropriate
driver, and the driver uses the minor number to figure out which specific device to access. In
some cases, minor numbers can also be used for accessing specific functions of a device.

The naming convention used by files in /dev is, to put it bluntly, a complete mess. Because the
kernel itself doesn't care what filenames are used in /dev (it cares only about the major and
minor numbers), the distribution maintainers, applications programmers, and device driver
writers are free to choose names for a device file. Often, the person writing a device driver
will suggest a name for the device, and later the name will be changed to accommodate other,
similar devices. This can cause confusion and inconsistency as the system develops;
hopefully, you won't encounter this problem unless you're working with newer device drivers
— those that are under testing.

At any rate, the device files included in your original distribution should be accurate for the
kernel version and for device drivers included with that distribution. When you upgrade your
kernel or add additional device drivers (see Section 7.4), you may need to add a device file
using the mknod command. The format of this command is:

mknod -m permissions name type major minor

164

Chapter 6. Managing Filesystems, Swap Space, and Devices

where:

e name is the full pathname of the device to create, such as /dev/rft0

e type is either ¢ for a character device or b for a block device

e major is the major number of the device

e minor is the minor number of the device

e -m permissions is an optional argument that sets the permission bits of the new
device file to permissions

For example, let's say you're adding a new device driver to the kernel, and the documentation
says that you need to create the block device /dev/bogus, major number 42, minor number 0.
You would use the command:

mknod /dev/bogus b 42 0

Making devices is even easier with the shell script /dev/MAKEDEYV that comes with many
distributions — you specify only the kind of device you want, and MAKEDEYV finds out the
major and minor numbers for you.

If you don't specify the -m permissions argument, the new device is given the permissions
for a newly created file, modified by your current umask — usually 0644. To set the
permissions for /dev/bogus to 0660 instead, we use:

mknod -m 660 /dev/bogus b 42 0
You can also use chmod to set the permissions for a device file after creation.

Why are device permissions important? Like any file, the permissions for a device file control
who may access the raw device, and how. As we saw in the previous example, the device file
for /dev/hda has permissions 0660, which means that only the owner and users in the file's
group (here, the group disk is used) may read and write directly to this device. (Permissions
are introduced in Section 4.13 in Chapter 4.)

In general, you don't want to give any user direct read and write access to certain devices —
especially those devices corresponding to disk drives and partitions. Otherwise, anyone could,
say, run mkfs on a drive partition and completely destroy all data on the system.

In the case of drives and partitions, write access is required to corrupt data in this way, but
read access is also a breach of security; given read access to a raw device file corresponding
to a disk partition, a user could peek in on other users' files. Likewise, the device file
/dev/mem corresponds to the system's physical memory (it's generally used only for extreme
debugging purposes). Given read access, clever users could spy on other users' passwords,
including the one belonging to root, as they are entered at login time.

Be sure that the permissions for any device you add to the system correspond to how the
device can and should be accessed by users. Devices such as serial ports, sound cards, and
virtual consoles are generally safe for mortals to have access to, but most other devices on the
system should be limited to use by root (and to programs running setuid as root).

165

Chapter 6. Managing Filesystems, Swap Space, and Devices

Many files found in /dev are actually symbolic links (created using In -s, in the usual way) to
another device file. These links make it easier to access certain devices by using a more
common name. For example, if you have a serial mouse, that mouse might be accessed
through one of the device files /dev/ttyS0, /dev/ttyS1, /dev/ttyS2, or /dev/ttyS3, depending on
which serial port the mouse is attached to. Many people create a link named /dev/mouse to the
appropriate serial device, as in:

In -s /dev/ttyS2 /dev/mouse

In this way, users can access the mouse from /dev/mouse, instead of having to remember
which serial port it is on. This convention is also used for devices such as /dev/cdrom and
/dev/imodem. These files are usually symbolic links to a device file in /dev corresponding to
the actual CD-ROM or modem device.

To remove a device file, just use rm, as in:

rm /dev/bogus

Removing a device file does not remove the corresponding device driver from memory or
from the kernel; it simply leaves you with no means to talk to a particular device driver.
Similarly, adding a device file does not add a device driver to the system; in fact, you can add
device files for drivers that don't even exist. Device files simply provide a "hook" into a
particular device driver should such a driver exist in the kernel.

166

Chapter 7. Upgrading Software and the Kernel

Chapter 7. Upgrading Software and the Kernel

In this chapter, we'll show you how to upgrade software on your system, including rebuilding
and installing a new operating system kernel. Although most Linux distributions provide
some automated means to install, remove, and upgrade specific software packages on your
system, it is often necessary to install software by hand.

Non-expert users will find it easiest to install and upgrade software by using a package
system, which most distributions provide. If you don't use a package system, installations and
upgrades are more complicated than with most commercial operating systems. Even though
precompiled binaries are available, you may have to uncompress them and unpack them from
an archive file. You may also have to create symbolic links or set environment variables so
that the binaries know where to look for the resources they use. In other cases, you'll need to
compile the software yourself from sources.

Another common Linux activity is building the kernel. This is an important task for several
reasons. First of all, you may find yourself in a position where you need to upgrade your
current kernel to a newer version, to pick up new features or hardware support. Second,
building the kernel yourself allows you to select which features you do (and do not) want
included in the compiled kernel.

Why is the ability to select features a win for you? All kernel code and data are "locked
down" in memory; that is, it cannot be swapped out to disk. For example, if you use a kernel
image with support for hardware you do not have or use, the memory consumed by
the support for that hardware cannot be reclaimed for use by user applications. Customizing
the kernel allows you to trim it down for your needs.

It should be noted here that most distributions today ship with modularized kernels. This
means that the kernel they install by default contains only the minimum functionality needed
to bring up the system; everything else is then contained in modules that add any additionally
needed functionality on demand. We will talk about modules in much greater detail later.

7.1 Archive and Compression Utilities

When installing or upgrading software on Unix systems, the first things you need to be
familiar with are the tools used for compressing and archiving files. Dozens of such utilities
are available. Some of these (such as tar and compress) date back to the earliest days of Unix;
others (such as gzip and bzip2) are relative newcomers. The main goal of these utilities is to
archive files (that is, to pack many files together into a single file for easy transportation or
backup) and to compress files (to reduce the amount of disk space required to store
a particular file or set of files).

In this section, we're going to discuss the most common file formats and utilities you're likely
to run into. For instance, a near-universal convention in the Unix world is to transport files or
software as a tar archive, compressed using compress or gzip. In order to create or unpack
these files yourself, you'll need to know the tools of the trade. The tools are most often used
when installing new software or creating backups — the subject of the following two sections
in this chapter.

167

Chapter 7. Upgrading Software and the Kernel

7.1.1 Using gzip and bzip2

gzip is a fast and efficient compression program distributed by the GNU project. The basic
function of gzip is to take a file, compress it, save the compressed version as filename.gz, and
remove the original, uncompressed file. The original file is removed only if gzip is successful;
it is very difficult to accidentally delete a file in this manner. Of course, being GNU software,
gzip has more options than you want to think about, and many aspects of its behavior can be
modified using command-line options.

First, let's say that we have a large file named garbage.txt:

rutabaga% ls -1 garbage.txt
—rW-r——-r--— 1 mdw hack 312996 Nov 17 21:44 garbage.txt

To compress this file using gzip, we simply use the command:

gzip garbage.txt

This replaces garbage.txt with the compressed file garbage.txt.gz. What we end up with is the
following:

rutabaga% gzip garbage.txt
rutabaga% ls -1 garbage.txt.gz
—rwW-r—--r-—-— 1 mdw hack 103441 Nov 17 21:44 garbage.txt.gz

Note that garbage.txt is removed when gzip completes.

You can give gzip a list of filenames; it compresses each file in the list, storing each with a .gz
extension. (Unlike the zip program for Unix and MS-DOS systems, gzip will not, by default,
compress several files into a single .gz archive. That's what zar is for; see the next section.)

How efficiently a file is compressed depends upon its format and contents. For example,
many graphics file formats (such as PNG and JPEG) are already well compressed, and gzip
will have little or no effect upon such files. Files that compress well usually include plain-text
files, and binary files, such as executables and libraries. You can get information on a gzipped
file using gzip -/. For example:

rutabaga% gzip -1 garbage.txt.gz
compressed uncompr. ratio uncompressed name
103115 312996 67.0% garbage.txt

To get our original file back from the compressed version, we use gunzip, as in:
gunzip garbage.txt.gz

After doing this, we get:

rutabaga% gunzip garbage.txt.gz
rutabaga% ls -1 garbage.txt
—rwWw-r—-r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt

168

Chapter 7. Upgrading Software and the Kernel

which is identical to the original file. Note that when you gunzip a file, the compressed
version is removed once the uncompression is complete. Instead of using gunzip, you can also
use gzip -d (e.g., if gunzip happens not to be installed).

gzip stores the name of the original, uncompressed file in the compressed version. This way,
if the compressed filename (including the .gz extension) is too long for the filesystem type
(say, you're compressing a file on an MS-DOS filesystem with 8.3 filenames), the original
filename can be restored using gunzip even if the compressed file had a truncated name. To
uncompress a file to its original filename, use the -N option with gunzip. To see the value of
this option, consider the following sequence of commands:

rutabaga% gzip garbage.txt
rutabaga% mv garbage.txt.gz rubbish.txt.gz

If we were to gunzip rubbish.txt.gz at this point, the uncompressed file would be named
rubbish.txt, after the new (compressed) filename. However, with the -N option, we get:

rutabaga% gunzip -N rubbish.txt.gz
rutabaga% ls -1 garbage.txt
—rwWw-r—-r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt

gzip and gunzip can also compress or uncompress data from standard input and output. If gzip
is given no filenames to compress, it attempts to compress data read from standard input.
Likewise, if you use the -c option with gunzip, it writes uncompressed data to standard output.
For example, you could pipe the output of a command to gzip to compress the output stream
and save it to a file in one step, as in:

rutabaga% ls -laR $HOME | gzip > filelist.gz

This will produce a recursive directory listing of your home directory and save it in the
compressed file filelist.gz. You can display the contents of this file with the command:

rutabaga% gunzip -c filelist.gz | more

This will uncompress filelist.gz and pipe the output to the more command. When you use
gunzip -c, the file on disk remains compressed.

The zcat command is identical to gunzip -c. You can think of this as a version of cat for
compressed files. Linux even has a version of the pager less for compressed files, called zless.

When compressing files, you can use one of the options -7, -2, through -9 to specify the speed
and quality of the compression used. -/ (also — fasf) specifies the fastest method, which
compresses the files less compactly, while -9 (also — best) uses the slowest, but best
compression method. If you don't specify one of these options the default is -6. None of these
options has any bearing on how you use gunzip; gunzip will be able to uncompress the file no
matter what speed option you use.

gzip is relatively new in the Unix world. The compression programs used on most Unix
systems are compress and uncompress, which were included in the original Berkeley versions
of Unix. compress and uncompress are very much like gzip and gunzip, respectively;
compress saves compressed files as filename.Z as opposed to filename.gz, and uses a slightly
less efficient compression algorithm.

169

Chapter 7. Upgrading Software and the Kernel

However, the free software community has been moving to gzip for several reasons. First of
all, gzip works better. Second, there has been a patent dispute over the compression algorithm
used by compress — the results of which could prevent third parties from implementing the
compress algorithm on their own. Because of this, the Free Software Foundation urged a
move to gzip, which at least the Linux community has embraced. gzip has been ported to
many architectures, and many others are following suit. Happily, gunzip is able to uncompress
the .Z format files produced by compress.

Another compression/decompression program has also emerged to take the lead from gzip.
bzip2 is the new kid on the block and sports even better compression (on the average about
10-20% better than gzip), at the expense of longer compression times. You cannot use
bunzip2 to uncompress files compressed with gzip and vice versa, and because you cannot
expect everybody to have bunzip? installed on their machine, you might want to confine
yourself to gzip for the time being if you want to send the compressed file to somebody else.
However, it pays to have bzip2 installed because more and more FTP servers now provide
bzip2-compressed packages in order to conserve disk space and bandwidth. You can
recognize bzip2-compressed files by their .5z2 filename extension.

While the command-line options of bzip2 are not exactly the same as those of gzip, those that
have been described in this section are. For more information, see the bzip2(1) manual page.

The bottom line is that you should use gzip/gunzip or bzip2/bunzip2 for your compression
needs. If you encounter a file with the extension .Z, it was probably produced by compress,
and gunzip can uncompress it for you.

Earlier versions of gzip used .z (lowercase) instead of .gz as the compressed-filename

extension. Because of the potential confusion with .Z, this was changed. At any rate, gunzip
retains backwards compatibility with a number of filename extensions and file types.

7.1.2 Using tar

tar is a general-purpose archiving utility capable of packing many files into a single archive
file, while retaining information needed to restore the files fully, such as file permissions and
ownership. The name tar stands for tape archive because the tool was originally used to
archive files as backups on tape. However, use of tzar is not at all restricted to making tape
backups, as we'll see.

The format of the far command is:

tar functionoptions files...

where function is a single letter indicating the operation to perform, options is a list of
(single-letter) options to that function, and 77 Ies is the list of files to pack or unpack in an
archive. (Note that function is not separated from opt i ons by any space.)

function can be one of the following:

C

To create a new archive

170

Chapter 7. Upgrading Software and the Kernel

X
To extract files from an archive
t
To list the contents of an archive
r
To append files to the end of an archive
u
To update files that are newer than those in the archive
d

To compare files in the archive to those in the filesystem
You'll rarely use most of these functions; the more commonly used are c, x, and t.

The most common options are:

v
To print verbose information when packing or unpacking archives.

k
To keep any existing files when extracting — that is, to not overwrite any existing
files which are contained within the tar file.

ffilename
To specify that the tar file to be read or written is i lename.

z
To specify that the data to be written to the tar file should be compressed or that the
data in the tar file is compressed with gzip.

J

Like z, but uses bzip2 instead of gzip; works only with newer versions of far. Some
intermediate versions of tar used / instead; older ones don't support bzip?2 at all.

171

Chapter 7. Upgrading Software and the Kernel

To make tar show the files it is archiving or restoring — it is good practice to use this
so that you can see what actually happens (unless, of course, you are writing shell
scripts).

There are others, which we will cover later in this section.

Although the tar syntax might appear complex at first, in practice it's quite simple. For
example, say we have a directory named m¢, containing these files:

rutabaga% 1ls -1 mt

total 37

—rW-r—-—-r--— 1 root root 24 Sep 21 1993 Makefile
—rW-r—-—-r--— 1 root root 847 Sep 21 1993 README
“ITWXr—XIr-X 1 root root 9220 Nov 16 19:03 mt
—rW-r——-r--— 1 root root 2775 Aug 7 1993 mt.1
—rW-r—-—-r--— 1 root root 6421 Aug 7 1993 mt.c
—rw-r—-r-- 1 root root 3948 Nov 16 19:02 mt.o
-rWw-r--r-- 1 root root 11204 Sep 5 1993 st info.txt

We wish to pack the contents of this directory into a single far archive. To do this, we use
the command:

tar cf mt.tar mt

The first argument to far is the function (here, c, for create) followed by any options.
Here, we use the option f mt.tar to specify that the resulting tar archive be named mt.tar. The
last argument is the name of the file or files to archive; in this case, we give the name of a
directory, so far packs all files in that directory into the archive.

Note that the first argument to zar must be the function letter and options. Because of this,
there's no reason to use a hyphen (-) to precede the options as many Unix commands require.
tar allows you to use a hyphen, as in:

tar -cf mt.tar mt

but it's really not necessary. In some versions of far, the first letter must be the function, as
in c, t, or x. In other versions, the order of letters does not matter.

The function letters as described here follow the so-called "old option style." There is also a
newer "short option style" in which you precede the function options with a hyphen, and a
"long option style" in which you use long option names with two hyphens. See the Info page
for tar for more details if you are interested.

Be careful to remember the filename if you use the cf function letters. Otherwise tar will
overwrite the first file in your list of files to pack because it will mistake that for the filename!

It is often a good idea to use the v option with zar; this lists each file as it is archived. For
example:

172

Chapter 7. Upgrading Software and the Kernel

rutabaga% tar cvf mt.tar mt
mt/

mt/st info.txt

mt /README

mt/mt.1

mt/Makefile

mt/mt.c

mt/mt.o

mt/mt

If you use v multiple times, additional information will be printed, as in:

rutabaga% tar cvvf mt.tar mt

drwxr-xr-x root/root 0 Nov 16 19:03 1994 mt/

-rw-r--r-- root/root 11204 Sep 5 13:10 1993 mt/st info.txt
-rw-r—--r-- root/root 847 Sep 21 16:37 1993 mt/README
-rw-r—--r-- root/root 2775 Aug 7 09:50 1993 mt/mt.1
-rw-r--r-- root/root 24 Sep 21 16:03 1993 mt/Makefile
-rw-r—--r-- root/root 6421 Aug 7 09:50 1993 mt/mt.c
-rw-r--r-- root/root 3948 Nov 16 19:02 1994 mt/mt.o
-rwxXr-xr-x root/root 9220 Nov 16 19:03 1994 mt/mt

This is especially useful as it lets you verify that tar is doing the right thing.

In some versions of far, £ must be the last letter in the list of options. This is because far
expects the £ option to be followed by a filename — the name of the tar file to read from or
write to. If you don't specify £ rilename at all, tar assumes for historical reasons that it
should use the device /dev/rmt0 (that is, the first tape drive). In Section 8.1, in Chapter 8, we'll
talk about using far in conjunction with a tape drive to make backups.

Now, we can give the file mt.tar to other people, and they can extract it on their own system.
To do this, they would use the command:

tar xvf mt.tar

This creates the subdirectory mt¢ and places all the original files into it, with the same
permissions as found on the original system. The new files will be owned by the user running
the tar xvf (you) unless you are running as root, in which case the original owner is
preserved. The = option stands for "extract." The v option is used again here to list each file as
it is extracted. This produces:

courgette% tar xvf mt. tar
mt /

mt/st _info.txt

mt /README

mt/mt.1

mt/Makefile

mt/mt.c

mt/mt.o

mt/mt

We can see that zar saves the pathname of each file relative to the location where the tar file
was originally created. That is, when we created the archive using tar cf mt.tar mt, the only
input filename we specified was mt, the name of the directory containing the files. Therefore,
tar stores the directory itself and all the files below that directory in the tar file. When we
extract the tar file, the directory mt is created and the files placed into it, which is the exact
inverse of what was done to create the archive.

173

Chapter 7. Upgrading Software and the Kernel

By default, far extracts all tar files relative to the current directory where you execute tar. For
example, if you were to pack up the contents of your /bin directory with the command:

tar cvf bin.tar /bin

tar would give the warning;:

tar: Removing leading / from absolute pathnames in the archive.

What this means is that the files are stored in the archive within the subdirectory bin. When
this tar file is extracted, the directory bin is created in the working directory of tar — not as
/bin on the system where the extraction is being done. This is very important and is meant to
prevent terrible mistakes when extracting tar files. Otherwise, extracting a tar file packed as,
say, /bin would trash the contents of your /bin directory when you extracted it." If you really
wanted to extract such a tar file into /bin, you would extract it from the root directory, /. You
can override this behavior using the P option when packing tar files, but it's not recommended
you do so.

Another way to create the tar file mt.zar would have been to cd into the mt directory itself, and
use a command, such as:

tar cvf mt.tar *

This way the m¢ subdirectory would not be stored in the tar file; when extracted, the files
would be placed directly in your current working directory. One fine point of zar etiquette is
to always pack tar files so that they have a subdirectory at the top level, as we did in the first
example with tar cvf mt.tar mt. Therefore, when the archive is extracted, the subdirectory is
also created and any files placed there. This way you can ensure that the files won't be placed
directly in your current working directory; they will be tucked out of the way and prevent
confusion. This also saves the person doing the extraction the trouble of having to create a
separate directory (should they wish to do so) to unpack the tar file. Of course, there are
plenty of situations where you wouldn't want to do this. So much for etiquette.

When creating archives, you can, of course, give far a list of files or directories to pack into
the archive. In the first example, we have given far the single directory mt, but in the previous
paragraph we used the wildcard *, which the shell expands into the list of filenames in the
current directory.

Before extracting a tar file, it's usually a good idea to take a look at its table of contents to
determine how it was packed. This way you can determine whether you do need to create a

subdirectory yourself where you can unpack the archive. A command, such as:

tar tvf tarfile

lists the table of contents for the named tarfile. Note that when using the t function, only
one v is required to get the long file listing, as in this example:

! Some (older) implementations of Unix (e.g., Sinix and Solaris) do just that.

174

Chapter 7. Upgrading Software and the Kernel

courgette% tar tvf mt.tar

drwxr-xr-x root/root 0 Nov 16 19:03 1994 mt/

-rw-r--r-- root/root 11204 Sep 5 13:10 1993 mt/st info.txt
-rw-r—--r-- root/root 847 Sep 21 16:37 1993 mt/README
-rw-r—--r-- root/root 2775 Aug 7 09:50 1993 mt/mt.1
-rw-r—--r-- root/root 24 Sep 21 16:03 1993 mt/Makefile
-rw-r--r-- root/root 6421 Aug 7 09:50 1993 mt/mt.c
-rw-r--r-- root/root 3948 Nov 16 19:02 1994 mt/mt.o
-rwxXr-xr-x root/root 9220 Nov 16 19:03 1994 mt/mt

No extraction is being done here; we're just displaying the archive's table of contents. We can
see from the filenames that this file was packed with all files in the subdirectory m¢ so that
when we extract the tar file, the directory mt will be created and the files placed there.

You can also extract individual files from a tar archive. To do this, use the command:

tar xvf tarfile files

where 71 les is the list of files to extract. As we've seen, if you don't specify any 71 les, tar
extracts the entire archive.

When specifying individual files to extract, you must give the full pathname as it is stored in
the tar file. For example, if we wanted to grab just the file mt.c from the previous archive
mt.tar, we'd use the command:

tar xvf mt.tar mt/mt.c
This would create the subdirectory m¢ and place the file mt.c within it.

tar has many more options than those mentioned here. These are the features that you're likely
to use most of the time, but GNU tar, in particular, has extensions that make it ideal for
creating backups and the like. See the zar manual page and the following section for more
information.

7.1.3 Using tar with gzip and bzip2

tar does not compress the data stored in its archives in any way. If you are creating a tar file
from three 200K files, you'll end up with an archive of about 600K. It is common practice to
compress tar archives with gzip (or the older compress program). You could create a gzipped
tar file using the commands:

tar cvf tarfile files...
gzip -9 tarfile

But that's so cumbersome, and requires you to have enough space to store the uncompressed
tar file before you gzip it.

A much trickier way to accomplish the same task is to use an interesting feature of tar that
allows you to write an archive to standard output. If you specify - as the tar file to read or
write, the data will be read from or written to standard input or output. For example, we can
create a gzipped tar file using the command:

tar cvf - files... | gzip -9 > tarfile.tar.gz

175

Chapter 7. Upgrading Software and the Kernel

Here, far creates an archive from the named 77 7es and writes it to standard output; next,
gzip reads the data from standard input, compresses it, and writes the result to its own
standard output; finally, we redirect the gzipped tar file to tarrile.tar.gz.

We could extract such a tar file using the command:

gunzip -c¢ tarfile.tar.gz | tar xvf -

gunzip uncompresses the named archive file and writes the result to standard output, which is
read by far on standard input and extracted. Isn't Unix fun?

Of course, both commands are rather cumbersome to type. Luckily, the GNU version of tar
provides the z option which automatically creates or extracts gzipped archives. (We saved the
discussion of this option until now, so you'd truly appreciate its convenience.) For example,
we could use the commands:

tar cvzf tarfile.tar.gz files...
and:

tar xvzf tarfile.tar.gz

to create and extract gzipped tar files. Note that you should name the files created in this way
with the .tar.gz filename extensions (or the equally often used .zgz, which also works on
systems with limited filename capabilities) to make their format obvious. The z option works
just as well with other tar functions such as t.

Only the GNU version of far supports the z option; if you are using tar on another Unix
system, you may have to use one of the longer commands to accomplish the same tasks.
Nearly all Linux systems use GNU tar.

When you want to use far in conjunction with bzip2, you need to tell tar about your
compression program preferences, like this:

tar cvf tarfile.tar.bz2 - -use-compress-program=bzip2 files...
or, shorter:
tar cvf tarfile.tar.bz2 - -use-compress-program=bzip2 files...

or, shorter still:

tar cvif tarfile.tar.bz2 files

The last version works only with newer versions of GNU tar that support the j option.
Keeping this in mind, you could write short shell scripts or aliases to handle cookbook tar file

creation and extraction for you. Under bash, you could include the following functions in
your .bashrc:

176

Chapter 7. Upgrading Software and the Kernel

tarc () { tar czvf $l.tar.gz $1 }
tarx () { tar xzvf $1 }
tart () { tar tzvf $1 }

With these functions, to create a gzipped tar file from a single directory, you could use the
command:

tarc directory

The resulting archive file would be named di rectory.tar.gz. (Be sure that there's no trailing
slash on the directory name; otherwise the archive will be created as .tar.gz within the given
directory.) To list the table of contents of a gzipped tar file, just use:

tart file.tar.gz

Or, to extract such an archive, use:

tarx file.tar.gz

As a final note, we would like to mention that files created with gzip and/or tar can be
unpacked with the well-known WinZip utility on Windows systems. WinZip doesn't have
support for bzip2 yet, though. If you, on the other hand, get a file in .zip format, you can
unpack it on your Linux system using the unzip command.

7.1.4 tar Tricks

Because tar saves the ownership and permissions of files in the archive and retains the full
directory structure, as well as symbolic and hard links, using far is an excellent way to copy
or move an entire directory tree from one place to another on the same system (or even
between different systems, as we'll see). Using the — syntax described earlier, you can write a
tar file to standard output, which is read and extracted on standard input elsewhere.

For example, say that we have a directory containing two subdirectories: from-stuff and to-
stuff. from-stuff contains an entire tree of files, symbolic links, and so forth — something that
is difficult to mirror precisely using a recursive c¢p. In order to mirror the entire tree beneath
from-stuff to to-stuff, we could use the commands:

cd from-stuff
tar c¢f - . | (cd ../to-stuff; tar xvf -)

Simple and elegant, right? We start in the directory from-stuff and create a tar file of the
current directory, which is written to standard output. This archive is read by a subshell (the
commands contained within parentheses); the subshell does a cd to the target directory, ../to-
stuff (relative to from-stuff, that is), and then runs tar xvf, reading from standard input. No tar
file is ever written to disk; the data is sent entirely via pipe from one tar process to another.
The second tar process has the v option that prints each file as it's extracted; in this way, we
can verify that the command is working as expected.

In fact, you could transfer directory trees from one machine to another (via the network) using

this trick; just include an appropriate rsk (or ssh) command within the subshell on the right
side of the pipe. The remote shell would execute tar to read the archive on its standard input.

177

Chapter 7. Upgrading Software and the Kernel

(Actually, GNU tar has facilities to read or write tar files automatically from other machines
over the network; see the far(1) manual page for details.)

7.2 Upgrading Software

Linux is a fast-moving target. Because of the cooperative nature of the project, new software
is always becoming available, and programs are constantly being updated with newer
versions. This is especially true of the Linux kernel, which has many groups of people
working on it. During the development process, it's not uncommon for a new kernel patch to
be released on a nightly basis. While other parts of the system may not be as dynamic, the
same principles apply.

With this constant development, how can you possibly hope to stay on top of the most recent
versions of your system software? The short answer is, you can't. While there are people out
there who have a need to stay current with, say, the nightly kernel patch release, for the most
part, there's no reason to bother upgrading your software this often. In this section, we're
going to talk about why and when to upgrade and show you how to upgrade several important
parts of the system.

When should you upgrade? In general, you should consider upgrading a portion of your
system only when you have a demonstrated need to upgrade. For example, if you hear of a
new release of some application that fixes important bugs (that is, those bugs that actually
affect your personal use of the application), you might want to consider upgrading that
application. If the new version of the program provides new features you might find useful, or
has a performance boost over your present version, it's also a good idea to upgrade. When
your machine is somehow connected to the Internet, another good reason for upgrading would
be plugging a security hole that has been recently reported. However, upgrading just for the
sake of having the newest version of a particular program is probably silly.

Upgrading can sometimes be a painful thing to do. For example, you might want to upgrade a
program that requires the newest versions of the compiler, libraries, and other software in
order to run. Upgrading this program will also require you to upgrade several other parts of
the system, which can be a time-consuming process. On the other hand, this can be seen as an
argument for keeping your software up to date; if your compiler and libraries are current,
upgrading the program in question won't be a problem.

How can you find out about new versions of Linux software? The best way is to watch the
Usenet newsgroup comp.os.linux.announce (see the section Section 1.8.3) where
announcements of new software releases and other important information are posted. If you
have Internet access, you can then download the software via FTP and install it on your
system. Another good source to learn about new Linux software is the web site
http://www.freshmeat.net.

If you don't have access to Usenet or the Internet, the best way to keep in touch with recent
developments is to pay for a CD-ROM subscription. Here you receive an updated copy of the
various Linux FTP sites, on CD-ROM, every couple of months. This service is available from
a number of Linux vendors. It's a good thing to have, even if you have Internet access.

This brings us to another issue: what's the best upgrade method? Some people feel it's easier
to completely upgrade the system by reinstalling everything from scratch whenever a new

178

Chapter 7. Upgrading Software and the Kernel

version of their favorite distribution is released. This way you don't have to worry about
various versions of the software working together. For those without Internet access, this may
indeed be the easiest method; if you receive a new CD-ROM only once every two months, a
great deal of your software may be out of date.

It's our opinion, however, that reinstallation is not a good upgrade plan at all. Most of the
current Linux distributions are not meant to be upgraded in this way, and a complete
reinstallation may be complex or time-consuming. Also, if you plan to upgrade in this
manner, you generally lose all your modifications and customizations to the system, and
you'll have to make backups of your user's home directories and any other important files that
would be deleted during a reinstallation. Many novices choose this upgrade path because it's
the easiest to follow. In actuality, not much changes from release to release, so a complete
reinstallation is usually unnecessary and can be avoided with a little upgrading know-how.

In the rest of this section, we'll show you how to upgrade various pieces of your system
individually. We'll show you how to upgrade your system libraries and compiler, as well as
give you a generic method for installing new software. In the following section, we'll talk
about building a new kernel.

7.2.1 Upgrading Libraries

Most of the programs on a Linux system are compiled to use shared libraries. These libraries
contain useful functions common to many programs. Instead of storing a copy of these
routines in each program that calls them, the libraries are contained in files on the system that
are read by all programs at runtime. That is, when a program is executed, the code from the
program file itself is read, followed by any routines from the shared library files. This saves a
great deal of disk space; only one copy of the library routines is stored on disk.

In some instances, it's necessary to compile a program to have its own copy of the library
routines (usually for debugging) instead of using the routines from the shared libraries. We
say that programs built in this way are statically linked, while programs built to use shared
libraries are dynamically linked.

Therefore, dynamically linked executables depend upon the presence of the shared libraries
on disk. Shared libraries are implemented in such a way that the programs compiled to use
them generally don't depend on the version of the available libraries. This means that you can
upgrade your shared libraries, and all programs that are built to use those libraries will
automatically use the new routines. (There is an exception: if major changes are made to a
library, the old programs won't work with the new library. You'll know this is the case
because the major version number is different; we'll explain more later. In this case, you keep
both the old and new libraries around. All your old executables will continue to use the old
libraries, and any new programs that are compiled will use the new libraries.)

When you build a program to use shared libraries, a piece of code is added to the program that
causes it to execute /d.so, the dynamic linker, when the program is started. /d.so is responsible
for finding the shared libraries the program needs and loading the routines into memory.
Dynamically linked programs are also linked against "stub" routines, which simply take the
place of the actual shared library routines in the executable. /d.so replaces the stub routine
with the code from the libraries when the program is executed.

179

Chapter 7. Upgrading Software and the Kernel

The Ildd command can be used to list the shared libraries on which a given executable
depends. For example:

rutabaga% 1ldd /usr/bin/X11l/xterm
1ibXft.so.1l => /usr/X11R6/1ib/libXft.so.1l (0x40032000)
libXrender.so.l => /usr/X11R6/1lib/libXrender.so.1l (0x40088000)
libXaw.so.7 => /usr/X11R6/1lib/libXaw.so.7 (0x4008d000)
libXmu.so.6 => /usr/X11R6/1ib/libXmu.so.6 (0x400e4000)
libXt.so0.6 => /usr/X11R6/1ib/libXt.so.6 (0x400£fa000)
1ibSM.so.6 => /usr/X11R6/1ib/1ibSM.so.6 (0x40148000)
1ibICE.s0.6 => /usr/X11R6/1ib/1ibICE.so.6 (0x40152000)
libXpm.so.4 => /usr/X11R6/1ib/libXpm.so.4 (0x4016a000)
libXext.so0.6 => /usr/X11R6/1ib/libXext.so.6 (0x40179000)
1ibX11l.s0.6 => /usr/X11R6/1ib/1libX11l.s0.6 (0x40188000)
libncurses.so.5 => /lib/libncurses.so.5 (0x4026b000)
libc.so.6 => /lib/libc.so.6 (0x402b5000)
/lib/1d-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Here, we see that the xterm program depends on a number of shared libraries, including
libXaw, libXt, libX11, and libc. (The libraries starting with /ibX are all related to the X
Window System; /ibc is the standard C library.) We also see the version numbers of the
libraries for which the program was compiled (that is, the version of the stub routines used),
and the name of the file which contains each shared library. This is the file that /d.so will find
when the program is executed.

In order to use a shared library, the version of the stub routines (in the executable) must be
compatible with the version of the shared libraries. Basically, a library is compatible if its
major version number matches that of the stub routines. The major version number is the part
right after the .so. In this case, /ibX11 (the most basic library used by the X Window System)
is used with the major Version 6. The library file /ibX11.s0.6 (which usually resides in
/usr/X11R6/lib) might very well just be a symbolic link — e.g., to /ibX11.5s0.6.2. This means
that the library has the major version number 6 and the minor version number 2. Library
versions with the same major version number are supposed to be interchangeable. This way, if
a program was compiled with Version 6.0 of the stub routines, shared library Versions 6.1,
6.2, and so forth could be used by the executable. If a new version with the major version
number 6 and the minor version number 3 were released (and thus had the filename
libX11.50.6.3), all you would need to do to use this new version is change the symbolic link
libX11.50.6 to point to the new version. The xterm executable would then automatically
benefit from any bug fixes or similar that are included in the new version. In Section 13.1.7 in
Chapter 13, we describe how to use shared libraries with your own programs.

The file /etc/ld.so.conf contains a list of directories that /d.so searches to find shared library
files. An example of such a file is:

/usr/1lib
/usr/local/lib
/usr/X11R6/1ib

ld.so always looks in /lib and /usr/lib, regardless of the contents of /d.so.conf. Usually, there's
no reason to modify this file, and the environment variable LD LIBRARY PATH can add
additional directories to this search path (e.g., if you have your own private shared libraries
that shouldn't be used systemwide). However, if you do add entries to /etc/ld.so.conf or
upgrade or install additional libraries on your system, be sure to use the ldconfig command
which will regenerate the shared library cache in /etc/ld.so.cache from the Id.so search path.
This cache is used by /d.so to find libraries quickly at runtime without actually having to

180

Chapter 7. Upgrading Software and the Kernel

search the directories on its path. For more information, check the manual pages for /d.so and
ldconfig.

Now that you understand how shared libraries are used, let's move on to upgrading them. The
two libraries that are most commonly updated are /ibc (the standard C library) and /ibm (the
math library). Because naming is a little bit special for these, we will look at another library
here, namely /ibncurses, which "emulates" a graphical windowing system on the text console.

For each shared library, there are two separate files:
library.a

This is the static version of the library. When a program is statically linked, routines
are copied from this file directly into the executable, so the executable contains its
own copy of the library routines.”

library.so.version

This is the shared library image itself. When a program is dynamically linked, the stub
routines from this file are copied into the executable, allowing /d.so to locate the
shared library at runtime. When the program is executed, /d.so copies routines from
the shared library into memory for use by the program. If a program is dynamically
linked, the 1 ibrary.a file is not used for this library.

For the libncurses library, you'll have files, such as libncurses.a and libncurses.so.5.2. The .a
files are generally kept in /us#/lib, while .so files are kept in //ib. When you compile a
program, either the .a or the .so file is used for linking, and the compiler looks in //ib and
/usr/lib (as well as a variety of other places) by default. If you have your own libraries, you
can keep these files anywhere, and control where the linker looks with the -L option to the
compiler. See Section 13.1.7 in Chapter 13 for details.

The shared library image, ! ibrary.so.version, is kept in /lib for most systemwide
libraries. Shared library images can be found in any of the directories that /d.so searches at
runtime; these include //ib, /usr/lib, and the files listed in ld.so.conf. See the Id.so manual page
for details.

If you look in //ib, you'll see a collection of files such as the following:

LrwXrwxrwx 1 root root 17 Jul 11 06:45 /lib/libncurses.so.5 \

-> libncurses.so.5.2
—IWXIr—XI—X 1 root root 319472 Jul 11 06:45 /lib/libncurses.so.5.2
1lrTWXTrWXTIrwx 1 root root 13 Jul 11 06:45 libz.so.l -> libz.so.1.1.3
—YWXI—XIr—X 1 root root 62606 Jul 11 06:45 libz.so0.1.1.3

Here, we see the shared library images for two libraries — libncurses and libz. Note that each
image has a symbolic link to it, named 7ibrary.so.major, where major is the major
version number of the library. The minor number is omitted because /d.so searches for a
library only by its major version number. When /d.so sees a program that has been compiled

% On some distributions, the static versions of the libraries are moved into a separate package and not necessarily
installed by default. If this is the case, you won't find the .a files unless you install them.

181

Chapter 7. Upgrading Software and the Kernel

with the stubs for Version 5.2 of libncurses, it looks for a file called libncurses.so.5 in its
search path. Here, /lib/libncurses.so.5 is a symbolic link to /lib/libncurses.so.5.2, the actual
version of the library we have installed.

When you upgrade a library, you must replace the .a and .so. version files corresponding to
the library. Replacing the .a file is easy: just copy over it with the new versions. However,
you must use some caution when replacing the shared library image, .so. version; many of
the text-based programs on the system depend on shared library images, so you can't simply
delete them or rename them. To put this another way, the symbolic link I ibrary.so.major
must always point to a valid library image. To accomplish this, first copy the new image file
to /lib, and then change the symbolic link to point to the new file in one step, using /n -sf. This
is demonstrated in the following example.

Let's say you're upgrading from Version 5.2 of the /ibncurses library to Version 5.4. You
should have the files libncurses.a and libncurses.so.5.4. First, copy the .a file to the
appropriate location, overwriting the old version:

rutabaga# cp libncurses.a /usr/lib

Now, copy the new image file to //ib (or wherever the library image should be):

rutabaga# cp libncurses.so.5.4 /lib

Now, if you use the command Is -/ /lib/libncurses, you should see something like:

1rwXTrwXrwx 1 root root 17 Dec 10 1999 /lib/libncurses.so.5 ->
libncurses.so.4.2

—“ITWXIT=XI—X 1 root root 319472 May 11 2001 /lib/libncurses.so.5.2
—“ITWXT—XI—X 1 root root 321042 May 11 2001 /lib/libncurses.so.5.4

To update the symbolic link to point to the new library, use the command:

rutabaga# ln -sf /lib/libncurses.so.5.4 /lib/libncurses.so.5
This gives you:

lrwxrwxrwx 1 root root 14 Oct 23 13:25 libncurses.so.5 —->\
/lib/libncurses.so.5.4

-rwxr-xr-x 1 root root 623620 Oct 23 13:24 libncurses.so.5.2

-rwxr-xr-x 1 root root 720310 Nov 16 11:02 libncurses.so.5.4

Now you can safely remove the old image file, /ibncurses.so.5.2. You must use /n -sf to
replace the symbolic link in one step, especially when updating crucial libraries, such as libc.
If you were to remove the symbolic link first, and then attempt to use /n -s to add it again,
more than likely /n would not be able to execute because the symbolic link is gone, and as far
as ld.so is concerned, the /ibc library can't be found. Once the link is gone, nearly all the
programs on your system will be unable to execute. Be very careful when updating shared
library images. For [libncurses, things are less critical because you will always have
command-line programs left to clean up any mess you have made, but if you are used to using
ncurses-based programs, such as Midnight Commander, this might still be an inconvenience
for you.

182

Chapter 7. Upgrading Software and the Kernel

Whenever you upgrade or add a library to the system, it's not a bad idea to run ldconfig to
regenerate the library cache used by /d.so. In some cases, a new library may not be recognized
by Id.so until you run ldconfig.

One question remains: where can you obtain the new versions of libraries? Several of the
basic system libraries (/ibc, libm, and so on) can be downloaded from the directory
/pub/Linux/GCC on ftp://ftp.ibiblio.org. It contains the Linux versions of the gcc compiler,
libraries, include files, and other utilities. Each file there should have a README or release
file that describes what to do and how to install it. Other libraries are maintained and archived
separately. At any rate, all libraries you install should include the .so.version files and
possibly the .a files, as well as a set of include files for use with the compiler.

7.2.2 Upgrading the Compiler

One other important part of the system to keep up to date is the C compiler and related
utilities. These include gcc (the GNU C and C++ compiler itself), the linker, the assembler,
the C preprocessor, and various include files and libraries used by the compiler itself. All are
included in the Linux gcc distribution. Usually, a new version of gcc is released along with
new versions of the /ibc library and include files, and each requires the other.

You can find the current gcc release for Linux on the various FTP archives, including
/pub/Linux/GCC on ftp://ftp.ibiblio.org. The release notes there should tell you what to do.
Usually, upgrading the compiler is a simple matter of unpacking several tar files as root, and
possibly removing some additional files. If you don't have Internet access, you can obtain the
newest compiler from CD-ROM archives of the FTP sites, as described earlier.

To find out what version of gcc you have, use the command:
gcc -v

This should tell you something like:

Reading specs from /usr/lib/gcc-1lib/i486-suse-linux/2.95.3/specs
gcc version 2.95.3 20010315 (SuSE)

Note that gcc itself is just a frontend to the actual compiler and code-generation tools found
under:

/usr/lib/gcc-lib/machine/version

gec (usually in /usr/bin) can be used with multiple versions of the compiler proper, with the -
V option. In Section 13.1 in Chapter 13, we describe the use of gcc in detail.

We would at this point like to warn you not to try newer compilers without knowing exactly
what you are doing. Newer compilers might generate object files that are incompatible with
the older ones; this can lead to all kinds of trouble. Version 2.95.3 of gcc is, at the time of this
writing, considered the standard compiler for Linux that everybody expects to find available.
When one distributor (Red Hat) started to ship a newer version instead (and even that newer
version was not officially released), users ran into lots of trouble. Of course, by the time you
read this, another compiler version might be considered the standard. And if you feel
adventurous, by all means try newer versions, just be prepared for some serious tweaking.

183

Chapter 7. Upgrading Software and the Kernel

7.3 General Upgrade Procedure

Of course, you'll have to periodically upgrade other pieces of your system. As discussed in the
previous section, it's usually easier and best to upgrade only those applications you need to
upgrade. For example, if you never use Emacs on your system, why bother keeping up-to-date
with the most recent version of Emacs? For that matter, you may not need to stay completely
current with oft-used applications. If something works for you, there's little need to upgrade.

Modern Linux systems provide various ways of upgrading software, some manual (which
ultimately are the most flexible, but also the most difficult), others quite automated. In this
section, we'll look at three different techniques: using the RPM package system, using the
Debian package system, and doing things manually.

We'd like to stress here that using packages and package systems is convenient, and even if
you are a power-user, you might want to use these techniques because they save you time for
other, more fun stuff. Here is a short summary of the advantages:

e You have everything that belongs to a software package in one downloadable file.

e You can remove a software package entirely, without endangering other packages.

o Package systems keep a dependency database and can thus automatically track
dependencies. For example, they can tell you if you need to install a newer version of
a library in order to run a certain application you are about to install (and will refuse to
remove a library package as long as packages are installed that use the libraries this
package provides).

Of course, package systems also have a few disadvantages, some of which we discuss when
we talk about RPM and the Debian package system. A generic problem is that once you start
using a package system (which is almost a requirement if you use the distributions' automated
installation interfaces) you ought to really install everything through packages. Otherwise,
you can't keep track of the dependencies. For the same reason, mixing different package
systems is a bad idea.

7.3.1 Using RPM

RPM, the Red Hat Package Manager, is a tool that automates the installation of software
binaries and remembers what files are needed so that you can be assured the software will run
properly. Despite the name, RPM is not Red Hat-specific, but is used in many other
distributions nowadays, including SuSE and Caldera. Using RPM makes installing and
uninstalling software a lot easier.

The basic idea of RPM is that you have a database of packages and the files that belong to a
package. When you install a new package, the information about this package is recorded in
the database. Then, when you want to uninstall the package for every file of the package,
RPM checks whether other installed packages are using this file too. If this is the case, the file
in question is not deleted.

In addition, RPM tracks dependencies. Each package can be dependent on one or more other
packages. When you install a package, RPM checks whether the packages the new package is
dependent on are already installed. If not, it informs you about the dependency and refuses to
install the package.

184

Chapter 7. Upgrading Software and the Kernel

The dependencies are also used for removing packages: when you want to uninstall a package
that other packages are still dependent upon, RPM tells you about this, too, and refuses to
execute the task.

The increased convenience of using RPM packages comes at a price, however: first, as a
developer, it is significantly more difficult to make an RPM package than to simply pack
everything in a tar archive. And second, it is not possible to retrieve just one file from an
RPM package; you have to install everything or nothing.

If you already have an RPM system, installing RPM packages is very easy. Let's say that you
have an RPM package called Superfrob-4.i386.rpm (RPM packages always have the
extension .rpm; the i386 indicates that this is a binary package compiled for Intel x86
machines). You could then install it with:

tigger # rpm -i SuperFrob-4.i386.rpm

Instead of -7, you can also use the long-named version of this option; choose whatever you
like better:

tigger # rpm - -install SuperFrob-4.i386.rpm

If everything goes well, there will be no output. If you want RPM to be more verbose, you can
try:

tigger # rpm -ivh SuperFrob-4.i386.rpm

This prints the name of the package plus a number of hash marks so that you can see how the
installation progresses.

If the package you want to install needs another package that is not yet installed, you will get
something like the following:

tigger # rpm -i SuperFrob-4.i386.rpm
failed dependencies:
frobnik-2 is needed by SuperFrob-4

If you see this, you have to hunt for the package frobnik-2 and install this first. Of course, this
package can itself be dependent on other packages.

If you want to update a package that is already installed, use the -U or - -update option (which
is just the -i option combined with a few more implied options):

tigger # rpm -U SuperFrob-5.i386.rpm
Uninstalling a package is done with the -e or - -erase option. In this case, you do not specify

the package file (you might not have that around any longer), but rather, the package name
and version number:

tigger # rpm -e SuperFrob-5

185

Chapter 7. Upgrading Software and the Kernel

Besides the options described so far that alter the state of your system, the -¢g option provides
various kinds of information about everything that is recorded in the RPM database as well as
package files. Here are some useful things you can do with -g:

o Find out the version number of an installed package:

tigger# rpm -q SuperFrob
SuperFrob-5

e Geta list of all installed packages:

tigger# rpm -ga
SuperFrob-5
OmniFrob-3

glibc-2.2.2-38
¢ Find out to which package a file belongs:

tigger# rpm -gf /usr/bin/dothefrob

SuperFrob-5

tigger# rpm -gf /home/kalle/.xinitrc

file /home/kalle/.xinitrc is not owned by any package

o Display information about the specified package:

tigger# rpm -gi rpm

Name T rpm Relocations: (not relocateable)
Version : 3.0.6 Vendor: SuSE GmbH, Nuernberg, Germany
Release : 78 Build Date: Fri 11 May 2001 05:18:18
PM CEST

Install date: Sun 15 Jul 2001 03:06:14 PM CEST Build Host: hewitt.suse.de
Group : System Environment/Base Source RPM: rpm-3.0.6-78.src.rpm
Size : 7624258 License: GPL

Packager : feedback@suse.de

Summary : RPM Package Manager

Description

RPM Package Manager is the main tool for managing software packages

of the SuSE Linux distribution.

rpm can be used to install and remove software packages; with rpm it's easy
to update packages. rpm keep track of all these manipulations in a central
database. This way it is possible to get an overview of all installed
packages; rpm also supports database queries.

Authors:

Erik Troan <ewté@redhat.com>
Marc Ewing <marc@redhat.com>

SuSE series: a

o Show the files that will be installed for the specified package file:

tigger# rpm -gpl SuperFrob-5.i386.rpm
/usr/bin/dothefrob
/usr/bin/frobhelper
/usr/doc/SuperFrob/Installation
/usr/doc/SuperFrob/README
/usr/man/manl/dothefrob.1

186

Chapter 7. Upgrading Software and the Kernel

What we've just finished showing are the basic modes of operation, which are supplemented
by a large number of additional options. You can check those in the manual page for the
rpm(8) command.

If you are faced with an RPM package that you want to install, but have a system like
Slackware or Debian that is not based on RPM, things get a little bit more difficult.

You can either use the fairly self-explanatory command alien that can convert between
various package formats and comes with most distributions, or you can build the RPM
database from scratch.

The first thing you have to do in this latter case is to get the »pm program itself. You can
download it from http://www.rpm.org. Follow the installation instructions to build and install
it; if you have the C compiler gcc installed on your system, there should be no problems with
this.

The next task is to initialize the RPM database. Distributions that come with RPM do the
initialization automatically, but on other systems you will have to issue the command:

tigger # rpm - -initdb

This command creates several files in the directory /var/lib/rpm. The directory /var/lib should
already exist; if it doesn't, create it with the mkdir command first.

Now you can install RPM packages the normal way, but because you have not installed the
basic parts of the system, such as the C library with RPM, you will get errors like the
following:

tigger # rpm -i SuperFrob-4.i386.rpm
failed dependencies:
libm.so.5 is needed by SuperFrob-4
libdl.so.l is needed by SuperFrob-4
libc.so.5 is needed by SuperFrob-4

because those files are not recorded in the RPM database. Of course, you really do have those
files on your system; otherwise most programs wouldn't run. For RPM to work, you must tell
it not to care about any dependencies. You do this by specifying the command-line option - -
nodeps:

tigger # rpm -i - -nodeps SuperFrob-4.i386.rpm

Now, RPM will install the package without complaining. Of course, it will run only if the
libraries it needs are installed. The mere fact that you use - -nodeps doesn't save you when the
"dependent" library or software is not installed on your system.

With this information, you should be able to administer your RPM-based system. If you want
to know more, read the manual page for the »pm command, or check out http://www.rpm.org.

Some commercial companies sell automated upgrade services based on RPM. As a subscriber
to these services, you can have your system upgraded automatically; the service finds out
which new packages are available and installs them for you. If you use the SuSE distribution,
SuSE provides such a service for free. Even the Debian distribution (whose package system is

187

Chapter 7. Upgrading Software and the Kernel

described in the next section) has an automated upgrade system (described there). However,
some security experts consider these automated upgrades a security risk.

7.3.2 Using dpkg and apt

After rpm, the most popular package manager for Linux distributions is dpkg, which is used to
manage .deb archives; as the name implies, the .deb format originated with the Debian
distribution, but it is also used by Libranet and Xandros, among other vendors. Like the RPM
format, the .deb format keeps track of dependencies and files to help ensure your system is
consistent.

The technical differences between the two formats are actually fairly small; although the RPM
and .deb formats are incompatible (for example, you can't install a Debian package directly on
Red Hat), you can use alien to translate .deb packages for other distributions (and vice versa).
The main difference between the formats is that .deb packages are built using tools that help
make sure they have a consistent layout and generally conform to policies (most notably, the
Debian Policy Manual, provided in the debian-policy package) that help developers create
high-quality packages.

While dpkg is the low-level interface to the Debian package manager, most functions are
usually handled through either the apt suite of programs or frontends like dselect, aptitude,
gnome-apt, synaptic, or kpackage.

Installing .deb packages on a Debian system is quite easy. For example, if you have a package
named superfrob 4-1 _i386.deb, you can install it with:

tigger # dpkg -i superfrob 4-1 i386.deb

Selecting previously deselected package superfrob.

(Reading database ... 159540 files and directories currently installed.)
Unpacking superfrob (from superfrob 4-1 i386.deb)

Setting up superfrob (4-1)

If the superfrob package is missing a dependency, dpkg will issue a warning message:

tigger # dpkg -i superfrob 4-1 i386.deb

Selecting previously deselected package superfrob.

(Reading database ... 159540 files and directories currently installed.)
Unpacking superfrob (from superfrob 4-1 i386.deb)

dpkg: dependency problems prevent configuration of superfrob:

superfrob depends on frobnik (>> 2); however:
Package frobnik is not installed.
dpkg: error processing superfrob (- -install):
dependency problems - leaving unconfigured
Errors were encountered while processing:
superfrob

The output indicates that you would need frobnik Version 2 or later for the package to install
completely. (The files in the package are installed, but they may not work until frobnik is
installed too.)

Unlike RPM, dpkg doesn't make a distinction between installing a new package and
upgrading an existing one; the -i (or - -install) option is used in both cases. For example, if we
want to upgrade superfrob using a newly downloaded package superfrob 5-1 i386.deb, we'd

simply type:

188

Chapter 7. Upgrading Software and the Kernel

tigger # dpkg -i superfrob 5-1 i386.deb

(Reading database ... 159546 files and directories currently installed.)
Preparing to replace superfrob 4-1 (using superfrob 5-1 i386.deb)
Unpacking replacement superfrob

Setting up superfrob (5-1)

To uninstall a package, you can use either the - (- -remove) or -P (- -purge) options. The - -
remove option will remove most of the package, but will retain any configuration files, while -
-purge will remove the systemwide configuration files as well. For example, to completely
remove superfrob:

tigger # dpkg -P superfrob
(Reading database ... 159547 files and directories currently installed.)
Removing superfrob

dpkg can also be used to find out what packages are installed on a system, using the -/ (- -lis?)
option:

tigger $ dpkg -1

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)

||/ Name Version Description

++4-—============== —=== == =- == sesmsssssssssssssssssssss—s———————=
ii aZps 4.13b-15 GNU a2ps 'Anything to PostScript' converter
ii aalibl 1.4p5-10 ascii art library

ii abcde 2.0.3-1 A Better CD Encoder

ii zliblg-dev 1.1.3-19 compression library - development

The first three lines of the output are designed to tell you what the first three columns before
each package's name mean. Most of the time, they should read ii, which means the package is
correctly installed. If they don't, you should type dpkg - -audit for an explanation of what is
wrong with your system and how to fix it.

You can also use the -/ option with a package name or glob-style pattern; for example, you
could find out what version of superfrob is installed using:

tigger $ dpkg -1 superfrob

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description

++4- - -

ii superfrob 4-1 The superfrobulator

dpkg can also be used to find out what package to which a particular file belongs:

tigger $ dpkg - -search /bin/false
shellutils: /bin/false

tigger $ dpkg - -search /home/kalle/.xinitrc
dpkg: /home/kalle/.xinitrc not found.

You can also display information about an installed package or .deb archive:

tigger $ dpkg - -status dpkg
Package: dpkg

Essential: yes

Status: install ok installed

189

Chapter 7. Upgrading Software and the Kernel

Priority: required

Section: base

Installed-Size: 3156

Origin: debian

Maintainer: Dpkg Development <debian-dpkg@lists.debian.org>

Bugs: debbugs://bugs.debian.org

Version: 1.9.19

Replaces: dpkg-doc-ja

Pre-Depends: libc6 (>= 2.2.4-4), libncurses5 (>= 5.2.20020112a-1), libstdc++2.10-

glibc2.2 (>= 1:2.95.4-0.010810)

Conflicts: sysvinit (<< 2.80)

Conffiles:
/etc/alternatives/README 69c4ba7£08363e998e0f2e244a04£881
/etc/dpkg/dpkg.cfg 1db46lac9ald4f4cB8b47£5061078f5ee
/etc/dpkg/dselect.cfg 190f7¢cf843556324495ef127590752e3
/etc/dpkg/origins/debian 24926c0576edec3e316fd9f6072b8118
Description: Package maintenance system for Debian
This package contains the programs which handle the installation and
removal of packages on your system.

The primary interface for the dpkg suite is the 'dselect' program;
a more low-level and less user-friendly interface is available in
the form of the 'dpkg' command.

In order to unpack and build Debian source packages you will need to
install the developers' package 'dpkg-dev' as well as this one.
tigger $ dpkg - -info reportbug 1.43 all.deb

new debian package, version 2.0.

size 66008 bytes: control archive= 1893 bytes.

40 bytes, 2 lines conffiles
1000 bytes, 24 lines control

986 bytes, 15 lines md5sums
1014 bytes, 41 lines * postinst #!/bin/sh
147 bytes, 5 lines * postrm #!/bin/sh
416 bytes, 19 lines * prerm #!/bin/sh

Package: reportbug

Version: 1.43

Section: utils

Priority: standard

Architecture: all

Depends: python

Recommends: python-newt

Suggests: postfix | mail-transport-agent, gnupg | pgp, python-ldap (>= 1.8-1)

Conflicts: python (>> 2.3), python-newt (= 0.50.17-7.1)
Installed-Size: 195

Maintainer: Chris Lawrence <lawrencc@debian.org>

Description: Reports bugs in the Debian distribution.
reportbug is a tool designed to make the reporting of bugs in Debian
and derived distributions relatively painless. Its features include:

* Integration with the mutt, af, and mh/nmh mail readers.

* Access to outstanding bug reports to make it easier to identify
whether problems have already been reported.

* Support for following-up on outstanding reports.

* Optional PGP/GnuPG integration.

reportbug is designed to be used on systems with an installed mail

transport agent, like exim or sendmail; however, you can edit the
configuration file and send reports using any available mail server.

dpkg can also list the files and directories included in a .deb archive:

tigger $ dpkg - -contents superfrob_4-1_i386.deb
-rWXr-xr-x root/root 44951 2002-02-10 12:16:48 ./usr/bin/dothefrob
-rwxr—-xr-x root/root 10262 2002-02-10 12:16:48 ./usr/bin/frobhelper

190

Chapter 7. Upgrading Software and the Kernel

dpkg, like rpm, has numerous other options; for more details, refer to the manual pages for
dpkg and dpkg-deb.

In addition to dpkg, Debian and other Debian-based distributions provide the apt suite of
programs.” APT is the "Advanced Package Tool," and is designed as an archive-independent
system that can handle multiple package formats. Perhaps the most important feature of APT
is its ability to resolve dependencies automatically; if, for example, superfrob requires
Version 2 or later of frobnik, APT will try to find frobnik from the sources that are available
to it (including CD-ROMs, local mirrors, and the Internet).

The most useful interface to APT is the apt-get command. apt-get manages the list of
available packages (the "package cache") and can be used to resolve dependencies and install
packages. A typical session would start with an update of the APT cache:

tigger # apt-get update

Get:1 http://http.us.debian.org stable/main Packages [808kB]

Get:2 http://http.us.debian.org stable/main Release [88B]

Hit http://non-us.debian.org stable/non-US/main Packages

Hit http://non-us.debian.org stable/non-US/main Release

Get:3 http://security.debian.org stable/updates/main Packages [62.1kB]
Get:4 http://security.debian.org stable/updates/main Release [93B]
Fetched 870kB in 23s (37kB/s)

Reading Package Lists... Done

Building Dependency Tree... Done

The output indicates that there have been updates to the stable distribution, so we may want to
upgrade the packages already installed on the system. To do this automatically, we can use
apt-get's upgrade option:

tigger # apt-get upgrade
The following packages have been kept back:

gnumeric
17 packages upgraded, 0 newly installed, 0 to remove and 1 not upgraded.
Need to get 16.3MB of archives. After unpacking 5kB will be freed.
Do you want to continue? [Y/n] y
Get:1 http://http.us.debian.org stable/main base-passwd 3.4.6 [17.2kB]
Get:2 http://security.debian.org stable/updates/main ssh 1:3.1.6p4-1 [600kB]
(Reading database ... 159546 files and directories currently installed.)
Preparing to replace ssh 1:3.0.3p2-6 (using .../ssh 1%3a3.1.6p4-1 i386.deb)
Unpacking replacement ssh

One thing you will notice is that unlike most Linux commands, the actions taken by APT
commands are specified without dashes. apt-get does allow some options, but they are used
only to change the behavior of the main action specified.*

Note that gnumeric was not automatically upgraded, probably because it would have required
additional packages to be installed. To upgrade it and resolve dependencies, we can use apt-
get's install option, with the names of one or more packages: >

> Some RPM-based distributions now include APT as well because APT was designed to work with any
packaging format.
* Some other Linux commands, like cvs, also act this way.

191

Chapter 7. Upgrading Software and the Kernel

tigger # apt-get install gnumeric
The following extra packages will be installed:
libgal36 libglade3
The following NEW packages will be installed:
libgal36
2 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 8.3MB of archives. After unpacking 503kB will be used.
Do you want to continue? [Y/n] y

Another useful feature of APT is its ability to find information about packages in the
repository. The apt-cache command is used to look up information about packages that are
available for installation. One common use of apt-cache is to find packages based on
keywords in the package's description, by using words, complete phrases (in quotes), or
regular expressions. For example, if you want to find a package that allows you to play Ogg
Vorbis-encoded music files, you can use the search option to find appropriate packages:

tigger $ apt-cache search '"ogg vorbis"

audacity - A fast, cross-platform audio editor
bitcollider-plugins - bitcollider plugins

cplay - A front-end for various audio players

ggmpeg - a GTK+ front end to mpg321/mpgl23 and oggl23

libapache-mod-mp3 - turns Apache into a streaming audio server
libvorbis0 - The Vorbis General Audio Compression Codec
mp3blaster - Full-screen console mp3 and ogg vorbis player

mp3burn - burn audio CDs directly from MP3s or Ogg Vorbis files
oggtst - Read comments in ogg vorbis files

python-pyvorbis - A Python interface to the Ogg Vorbis library
vorbis-tools - Several Ogg Vorbis Tools

xmms - Versatile X audio player that looks like Winamp

xmms-dev - XMMS development static library and header files

mg3 - a mp3/0gg audio player written in Qt.

Now, if we are interested in one of these packages, we can find out more about it using the
show option of apt-cache:

tigger $ apt-cache show xmms

Package: xmms

Priority: optional

Section: sound

Installed-Size: 4035

Maintainer: Josip Rodin <jrodin@jagor.srce.hr>

Description: Versatile X audio player that looks like Winamp
XMMS (formerly known as X11Amp) is an X/GTK+ based audio player
for various audio formats.

It's able to read and play:
* Audio MPEG layer 1, 2, and 3 (with mpgl23 plug-in),
WAV, RAW, AU (with internal wav plug-in and MikMod plug-in),
MOD, XM, S3M, and other module formats (with MikMod plug-in),
CD Audio (with CDAudio plug-in), with CDDB support,
.cin files, 1id Software,
Ogg Vorbis files.
has eSound, 0SS, and disk writer support for outputting sound.

F ok ok ok ok

I

It looks almost the same as famous Winamp, and includes those neat
features like general purpose, visualization and effect plug-ins,
several of which come bundled, then spectrum analyzer, oscilloscope,

5 Note that apt-get does not install packages directly from .deb archives; dpkg's - -install option should be used
instead for an archive that you have in a .deb archive on disk or have downloaded directly from the Internet.
When using dpkg, you will need to resolve the dependencies yourself.

192

Chapter 7. Upgrading Software and the Kernel

skins support, and of course, a playlist window.

While a full exploration of APT's features was beyond the scope of this chapter, the apt
manual page (and the manual pages it references) along with the APT HOWTO (available in
the apt-howto-en package) should answer any questions you may have.

In addition to the command-line tools, a number of easy-to-use text-based and graphical
frontends have been developed. One of the most mature frontends is kpackage, which is part
of the KDE Desktop Environment, but can be used with other desktops such as GNOME.
kpackage can be run from the command line or found in the System menu of KDE. Figure 7-1
shows a sample screen from kpackage.

Figure 7-1. kpackage package manager

= e e R | iU A I TIE]
s [Packsgen Gache Spegial Sefinge fislp |
|
— | Il | ekl | Moy &1 Fropaties Fil: List
e arT -
8 o= gnome-apt
2 Eadmn
* Y acpi SIE 1.04-
" . i e noms-apk
A3 ey YAl A5
. wersion [k R I
e ahacron 180K 136
: . - wtatus Iresiofl ob instalzd
{ I st Fh D 54
B . - i
e 1 aptiude WEH D2 oy =
| 752000
T Tw 2 (-5 e E—
7 o - - dlRmeripion CHwia Troi-and i mer O e- e i A
hor eHcron T4 Opd -
b . .) graphecal paciags management program s
{.IJ‘ T Ha s Dieldan. | provides The aome feshires ot the
3 detona 4B 103 =gt command I vy wilhoa G
A e e A tromi.=nd basad on Grasees . Gnomea-apt
o - N e o b ey wpg ade o Debean
N deycurses 168k B0 sysbam, an wall 3% Petabhrisdal packages
T ey i i A ursing any of the medhods il apl suppars
) ducaver 153 15 (. Tip, e
i 5 § I alapandu gl {13000 i
49 ol odopbe 220202 i7 i=a 1 21350,
Hipaciage TG 42227 bt ey .
ihrar 138 2ESA- FEY] = 023103
43 bt et TR YT K] 2 w1l 2
. - 1328 12435
— ATH -
A% 1 23 ; 21214 - -
P oo otte 1408 doaT = 12404 21 | = |
Ol O =ren vy & - bt
nsial marked Lirenzioll marksd | sl
Upclaling File List |

The main window of kpackage displays a list of all the packages available for your system on
the left, with a box to the right; when you choose a package in the list, the box to the right
includes information about the package you selected. You can install or uninstall packages by
selecting them and choosing /nstall or Uninstall from the Packages menu, or by clicking the
column labeled Mark to place a checkmark next to them, and then clicking the Install marked
or Uninstall marked buttons. You can also install .deb packages directly by clicking the Open
button on the toolbar to the left of the screen and selecting the file, or dragging .deb icons
from KDE file manager windows into kpackage's window. kpackage also has tools for finding
packages with particular names. Like all KDE applications, kpackage has help available by
pressing F1 or using the Help menu.

7.3.3 Upgrading Other Software
In order to upgrade other applications, you'll have to obtain the newest release of the software.

This is usually available as a gzipped or compressed tar file. Such a package could come in
several forms. The most common are binary distributions, in which the binaries and related

193

Chapter 7. Upgrading Software and the Kernel

files are archived and ready to unpack on your system, and source distributions, in which the
source code (or portions of the source code) for the software is provided, and you have to
issue commands to compile and install it on your system.

Shared libraries make distributing software in binary form easy; as long as you have a version
of the libraries installed that is compatible with the library stubs used to build the program,
you're set. However, in many cases, it is easier (and a good idea) to release a program as
source. Not only does this make the source code available to you for inspection and further
development, but it also allows you to build the application specifically for your system, with
your own libraries. Many programs allow you to specify certain options at compile time, such
as selectively including various features in the program when built. This kind of
customization isn't possible if you get prebuilt binaries.

There's also a security issue at play when installing binaries without source code. Although on
Unix systems viruses are nearly unheard of,® it's not difficult to write a "Trojan Horse," a
program that appears to do something useful but, in actuality, causes damage to the system.
For example, someone could write an application that includes the "feature" of deleting all
files in the home directory of the user executing the program. Because the program would be
running with the permissions of the user executing it, the program itself has the ability to do
this kind of damage. (Of course, the Unix security mechanism prevents damage being done to
other users' files or to any important system files owned by root.)

While having source won't necessarily prevent this from happening (do you read the source
code for every program you compile on your system?), at least it gives you a way to verify
what the program is really doing. Also, if source code is available, it is likely that some
people will peruse it so that using source is a bit safer; but you can't count on that.

At any rate, dealing with source and binary distributions of software is quite simple. If the
package is released as a tar file, first use the far ¢ option to determine how the files have been
archived. In the case of binary distributions, you may be able to unpack the tar file directly on
your system — say, from / or /usr. When doing this, be sure to delete any old versions of the
program and its support files (those that aren't overwritten by the new tar file). If the old
executable comes before the new one on your path, you'll continue to run the old version
unless you remove it.

Source distributions are a bit trickier. First, you must unpack the sources into a directory of
their own. Most systems use /usr/src for just this. Because you usually don't have to be root
to build a software package (although you will usually require root permissions to install the
program once compiled!), it might be a good idea to make /usr/src writable by all users, with
the command:

chmod 1777 /usr/src

This allows any user to create subdirectories in /usr/src and place files there. The first 1 in the
mode is the "sticky" bit, which prevents users from deleting each other's subdirectories.

% A "virus" in the classic sense is a program that attaches to a "host," which runs when the host is executed. On
Unix systems, this usually requires root privileges to do any harm, and if programmers could obtain such
privileges, they probably wouldn't bother with a virus.

194

Chapter 7. Upgrading Software and the Kernel

You can now create a subdirectory under /usr/src and unpack the tar file there, or you can
unpack the tar file directly from /usr/src if the archive contains a subdirectory of its own.

Once the sources are available, the next step is to read any README and INSTALL files or
installation notes included with the sources. Nearly all packages include such documentation.
The basic method used to build most programs is:

1. Check the Makefile. This file contains instructions for make, which controls the
compiler to build programs. Many applications require you to edit minor aspects of the
Makefile for your own system; this should be self-explanatory. The installation notes
will tell you if you have to do this. If there is no Makefile in the package, you might
have to generate it first. See item 3 for how to do this.

2. Possibly edit other files associated with the program. Some applications require you to
edit a file named config.h; again, this will be explained in the installation instructions.

3. Possibly run a configuration script. Such a script is used to determine what facilities
are available on your system, which is necessary to build more complex applications.

Specifically, when the sources do not contain a Makefile in the top-level directory, but
instead a file called Makefile.in and a file called configure, the package has been built
with the Autoconf system. In this (more and more common) case, you run the
configuration script like this:

./configure

The ./ should be used so that the local configure is run, and not another configure
program that might accidentally be in your path. Some packages let you pass options
to configure that often enable or disable specific features of the package. (You can
find out what these options are with configure - -help.) Once the configure script has
run, you can proceed with the next step.

4. Run make. Generally, this executes the appropriate compilation commands as given in
the Makefile. In many cases you'll have to give a "target" to make, as in make all or
make install. These are two common targets; the former is usually not necessary but
can be used to build all targets listed in a Makefile (e.g., if the package includes
several programs, but only one is compiled by default); the latter is often used to
install the executables and support files on the system after compilation. For this
reason, make install is usually run as root.

Even after the installation, there is often one major difference between programs
installed from source or from a binary package. Programs installed from source are
often installed below /usr/local by default, which is rarely the case with binary
packages.

You might have problems compiling or installing new software on your system, especially if
the program in question hasn't been tested under Linux, or depends on other software you
don't have installed. In Chapter 13, we talk about the compiler, make, and related tools in
detail.

Most software packages include manual pages and other files, in addition to the source and
executables. The installation script (if there is one) will place these files in the appropriate

195

Chapter 7. Upgrading Software and the Kernel

location. In the case of manual pages, you'll find files with names such as foobar.l or
foobar.man. These files are usually nroff source files, which are formatted to produce the
human-readable pages displayed by the man command. If the manual page source has a
numeric extension, such as ./, copy it to the directory /usr/man/manli, where [is the number
used in the filename extension. (This corresponds to the manual "section" number; for most
user programs, it is 1.) If the file has an extension such as .man, it usually suffices to copy the
file to /usr/man/manl, renaming the .man extension to . /.

7.4 Building a New Kernel

Rebuilding the kernel sounds like a pastime for hackers, but it is an important skill for any
system administrator. First, you should rebuild the kernel on your system to eliminate the
device drivers you don't need. This reduces the amount of memory used by the kernel itself,
as described in Section 6.2. The kernel is always present in memory, and the memory it uses
cannot be reclaimed for use by programs if necessary.

You also need to occasionally upgrade your kernel to a newer version. As with any piece of
your system, if you know of important bug fixes or new features in a kernel release, you may
want to upgrade to pick them up. Those people who are actively developing kernel code will
also need to keep their kernel up-to-date in case changes are made to the code they are
working on. Sometimes, it is necessary to upgrade your kernel to use a new version of the
compiler or libraries. Some applications (such as the X Window System) require a certain
kernel version to run.

You can find out what kernel version you are running through the command uname -a. This
should produce something like:

rutabaga%$ uname -a
Linux owl 2.4.19-64GB-SMP #2 SMP Fri Aug 9 21:46:03 CEST 2002 i686 unknown

Here, we see a machine running Version 2.4.19 of the kernel (configured for a machine with
more than one processor [SMP] and a maximum of 64 GB RAM), which was last compiled
on August 9. We see other information as well, such as the hostname of the machine, the
number of times this kernel has been compiled (two), and the fact that the machine is a
Pentium Pro or better (as denoted by i686). The manual page for uname(1) can tell you
more.

The Linux kernel is a many-tentacled beast. Many groups of people work on different pieces
of it, and some parts of the code are a patchwork of ideas meeting different design goals.
Overall, however, the kernel code is clean and uniform, and those interested in exploring its
innards should have little trouble doing so. However, because of the great amount of
development going on with the kernel, new releases are made very rapidly — sometimes
daily! The chief reason for this is that nearly all device drivers are contained within the kernel
code, and every time someone updates a driver, a new release is necessary. As the Linux
community moves toward loadable device drivers, the maintainers of those drivers can release
them independently of the main kernel, alleviating the necessity of such rapid updates.

Currently, Linus Torvalds maintains the "official" kernel release. Although the GPL allows

anyone to modify and rerelease the kernel under the same copyright, Linus's maintenance of
an "official" kernel is a helpful convention that keeps version numbers uniform and allows

196

Chapter 7. Upgrading Software and the Kernel

everyone to be on equal footing when talking about kernel revisions. In order for a bug fix or
new feature to be included in the kernel, all one must do is send it to Linus (or whoever is in
charge for the kernel series in question, Linus himself always maintains the most current
kernel), who will usually incorporate the change as long as it doesn't break anything.

Kernel version numbers follow the convention:

major.minor.patchlevel

major is the major version number, which rarely changes, minor is the minor version
number, which indicates the current "strain" of the kernel release, and patchlievel is the
number of the patch to the current kernel version. Some examples of kernel versions are 2.4.4,
(patch level 4 of kernel Version 2.4), and 2.5.1 (patch level 1 of kernel Version 2.5).

By convention, even-numbered kernel versions (2.2, 2.4, and so on) are "stable" releases,
patches that contain only bug fixes and no new features. Odd-numbered kernel versions (2.3,
2.5, and so on) are "development" releases, patches that contain whatever new code
developers wish to add and bug fixes for that code. When a development kernel matures to the
point where it is stable enough for wide use, it is renamed with the next highest (even) minor
version number, and the development cycle begins again.

For example, kernel Versions 2.2 and 2.3 were worked on concurrently. Patches made to 2.2
were bug fixes — meant only to correct problems in the existing code. Patches to 2.3 included
bug fixes as well as a great deal of new code — new device drivers, new features, and so on.
When kernel Version 2.3 was stable enough, it was renamed to 2.4; a copy was made and
named Version 2.5. Development continued with Versions 2.4 and 2.5. 2.4 is the new "stable"
kernel, while 2.5 is a development kernel for new features.’

Note that this version-numbering convention applies only to Linus's official kernel release and
only to kernel versions after 1.0. Prior to 1.0 (this is now ancient history), there was only one
"current" kernel version and patches were consistently made to it. The kernel development
community has found that having two concurrent kernel versions allows those who want to
experiment to use the development kernel, and those who need a reliable platform to stick
with the stable kernel. In this way, if the development kernel is seriously broken by new code,
it shouldn't affect those who are running the newest stable kernel. The general rule is that you
should use development kernels if you want to be on the leading edge of new features and are
willing to risk problems with your system. Use the development kernels at your own risk.

If you are interested in how the existing kernel versions have evolved, check out
http://www.kernel.org.

On your system, the kernel sources most probably live in /usr/src/linux (unless you use the
Debian distribution, where you can find the kernel sources in /usr/src/kernel-source-
versionsnumber). If you are going to rebuild your kernel only from the current sources, you
don't need to obtain any files or apply any patches. If you wish to upgrade your kernel to a
new version, you need to follow the instructions in the following section.

7 Actually, the first versions of the 2.4 kernel series were not as stable as the number implies, which is why many
users stayed with the 2.2 series for a while. By now, the current 2.4 kernel can be considered very stable, though,
if you don't use any 2.4 kernels before 2.4.16.

197

Chapter 7. Upgrading Software and the Kernel

7.4.1 Obtaining Kernel Sources

The official kernel is released as a gzipped tar file, containing the sources along with a series
of patch files — one per patch level. The tar file contains the source for the unpatched
revision; for example, there is a tar file containing the sources for kernel Version 2.4 with no
patches applied. Each subsequent patch level is released as a patch file (produced using diff),
which can be applied using the patch program. In Section 14.2.8 in Chapter 14, we describe
the use of patch in detail.

Let's say you're upgrading to kernel Version 2.4 patch level 4. You'll need the sources for 2.4
(the file might be named v2.4.0.tar.gz) and the patches for patch levels 1 through 4. These
files would be named patchl, patch2, and so forth. (You need all the patch files up to the
version to which you're upgrading. Usually, these patch files are rather small, and are gzipped
on the archive sites.) All these files can be found in the kernel directory of the Linux FTP
archive sites; for example, on ftp://ftp.kernel.org, the directory containing the 2.4 sources and
patches is /pub/linux/kernel/v2.4. You will find the kernel sources here as tar archives,
compressed with both gzip and bzip2.

If you are already at some patch level of the kernel (such as 2.4 patch level 2) and want to
upgrade to a newer patch level, you can simply apply the patches from the version you have
up to the version to which you'd like to upgrade. If you're upgrading from, say, 2.4 patch level
2 to 2.4 patch level 4, you need the patch files for 2.4.3 and 2.4.4.

7.4.1.1 Unpacking the sources

First, you need to unpack the source tar file from /us#/src. You do this with commands such
as:

rutabaga# ed /usr/src
rutabaga# mv linux linux.old
rutabaga# tar xzf v2.4.0.tar.gz

This saves your old kernel source tree as /usr/src/linux.old and creates /usr/src/linux
containing the new sources. Note that the tar file containing the sources includes the /inux
subdirectory.

You should keep your current kernel sources in the directory /usr/src/linux because there are
two symbolic links — /usr/include/linux and /usr/include/asm — that point into the current
kernel source tree to provide certain header files when compiling programs. (You should
always have your kernel sources available so that programs using these include files can be
compiled.) If you want to keep several kernel source trees around, be sure that /usr/src/linux
points to the most recent one.

7.4.1.2 Applying patches

If you are applying any patch files, you use the patch program. Let's say that you have the
files patchl.gz through patch4.gz, which are gzipped. These patches should be applied from
the kernel sources main directory. That doesn't mean the patch files themselves should be
located there, but rather that patch should be executed from e.g. /usr/src/linux. For each patch
file, use the command:

198

Chapter 7. Upgrading Software and the Kernel

gunzip -c patchfile | patch -pl

from /usr/src. The -pl option tells patch it shouldn't strip any part of the filenames contained
within the patch file except for the first one.

You must apply each patch in numerical order by patch level. This is very important. Note
that using a wildcard such as patch* will not work because the * wildcard uses ASCII order,
not numeric order. (Otherwise, if you are applying a larger number of patches, patchl might
be followed by patchl0 and patchll, as opposed to patch2 and patch3.) It is best to run the
previous command for each patch file in succession, by hand. This way you can ensure you're
doing things in the right order.

You shouldn't encounter problems when patching your source tree in this way unless you try
to apply patches out of order or apply a patch more than once. Check the patch manual page if
you do encounter trouble. If all else fails, remove the new kernel source tree and start over
from the original tar file.

To double-check that the patches were applied successfully, use the commands:

find /usr/src/linux -follow -name "*.rej" -print
find /usr/src/linux -follow -name "*#" -print

This lists any files that are "rejected" portions of the patch process. If any such files exist, they
contain sections of the patch file that could not be applied for some reason. Look into these,
and if there's any doubt, start over from scratch. You cannot expect your kernel to compile or
work correctly if the patch process did not complete successfully and without rejections.

A handy script for patching the kernel is available and can be found in scripts/patch-kernel.
But as always, you should know what you are doing before using automated tools, even more
so when it comes to the very core of the operating system, the kernel.

7.4.2 Building the Kernel

There are six steps to building the kernel, and they should be quite painless. All these steps
are described in more detail in the following pages.

1. Make sure that all the required tools and utilities are installed and at the appropriate
versions. See the file Documentation/Changes in the kernel source for the list of
requirements.

2. Run make config, which asks you various questions about which drivers you wish to
include. You could also use the more comfortable variants make menuconfig or (only
when you are running the X Window System) make xconfig.

If you have previously built a kernel and then applied patches to a new version, you
can run make oldconfig to use your old config but be prompted for any new options
that may not have been in the old kernel.

3. Run make dep to gather dependencies for each source file and include them in the
various makefiles.

4. If you have built a kernel from this source tree before, run make clean to clear out old
object files and force a complete rebuild.

199

Chapter 7. Upgrading Software and the Kernel

hd

Run make bzImage to build the kernel itself.

6. Go have a coffee (or two, depending on the speed of your machine and amount of
available memory).

7. Install the new kernel image, either on a boot floppy or via LILO. You can use make

bzDisk to put the kernel on a boot floppy.

All these commands are executed from /usr/src/linux, except for Step 5, which you can do
anywhere.

A README is included in the kernel sources, which should be located at
/usr/src/linux/README on your system. Read it. It contains up-to-date notes on kernel
compilation, which may be more current than the information presented here. Be sure to
follow the steps described there, using the descriptions given later in this section as a guide.

The first step is to run make config. This executes a script that asks you a set of yes/no
questions about which drivers to include in the kernel. There are defaults for each question,
but be careful: the defaults probably don't correspond to what you want. (When several
options are available, the default will be shown as a capital letter, as in [Y/n].) Your answers
to each question will become the default the next time you build the kernel from this source
tree.

Simply answer each question, either by pressing Enter for the default, or pressing v or n
(followed by Enter). Some questions don't have a yes/no answer; you may be asked to enter a
number or some other value. A number of the configuration questions allow an answer of m in
addition to v or n. This option allows the corresponding kernel feature to be compiled as a
loadable kernel module, as opposed to building it into the kernel image itself. Loadable
modules, covered in the following section, Section 7.5, allow portions of the kernel (such as
device drivers) to be loaded and unloaded as needed on a running system. If you are unsure
about an option, type > at the prompt; for most options, a message will be shown that tells you
more about the option.

Some people say that make config has so many options now that it is hardly feasible to run it
by hand any longer, as you have to concentrate for a long time to press the right keys in
response to the right questions. Therefore, people are moving to the alternatives described
next.

An alternative to running make config is make xconfig, which compiles and runs an X-
Window-based kernel configuration program. In order for this to work, you must have the X
Window System running, have the appropriate X11 and Tcl/Tk libraries installed, and so
forth. Instead of asking a series of questions, the X-based configuration utility allows you to
use checkboxes to select which kernel options you want to enable. The system remembers
your configuration options each time you run make config, so if you're adding or removing
only a few features from your kernel, you need not reenter all the options.

Also available is make menuconfig, which uses the text-based curses library, providing a
similar menu-based kernel configuration if you don't have X installed. make menuconfig and
make xconfig are much more comfortable than make config, especially because you can go
back to an option and change your mind up to the point where you save your configuration.

200

Chapter 7. Upgrading Software and the Kernel

The following is part of a session with make config. When using make menuconfig or make
xconfig, you will encounter the same options, only presented in a more user-friendly fashion
(and we actually recommend the use of these tools if at all possible, as it is very easy to get
confused by the myriad of configuration options):

rm -f include/asm

(cd include ; 1n -sf asm-1386 asm)

/bin/sh scripts/Configure arch/i386/config.in
#

Using defaults found in .config

#

* ok ok

Code maturity level options

Prompt for development and/or incomplete code/drivers (CONFIG EXPERIMENTAL) (Y/n/?]

*

* Loadable module support

*

Enable loadable module support (CONFIG MODULES) [Y/n/?]
Set version information on all module symbols (CONFIG MODVERSIONS) [N/y/?]
Kernel module loader (CONFIG KMOD) [Y/n/?]

*

* Processor type and features
*

Processor family (386, 486, 586/K5/5x86/6x86/6x86MX, Pentium-Classic,
defined CONFIG MPENTIUMITII
Toshiba Laptop support (CONFIG TOSHIBA) [N/y/m/?]
/dev/cpu/microcode - Intel IA32 CPU microcode support (CONFIG MICROCODE) [M/n/y/?]
/dev/cpu/*/msr - Model-specific register support (CONFIG X86 MSR) [M/n/y/?]
/dev/cpu/*/cpuid - CPU information support (CONFIG X86 CPUID) [M/n/y/?]
High Memory Support (off, 4GB, 64GB) [4GB]
defined CONFIG HIGHMEMA4G
Math emulation (CONFIG MATH EMULATION) [N/y/?]
MTRR (Memory Type Range Register) support (CONFIG MTRR) [Y/n/?]
Symmetric multi-processing support (CONFIG SMP) [Y/n/?]

*

* General setup
*

Networking support (CONFIG NET) [Y/n/?]

...and so on...

***% End of Linux kernel configuration.

*** Check the top-level Makefile for additional configuration.
*** Next, you may run 'make bzImage', 'make bzdisk', or 'make
install'.

If you have gathered the information about your hardware when installing Linux, that
information is probably sufficient to answer the configuration questions, most of which
should be straightforward. If you don't recognize some feature, it's a specialized feature that
you don't need. The following questions are found in the kernel configuration for
Version 2.4.4. If you have applied other patches, additional questions might appear. The same
is true for later versions of the kernel. Note that in the following list we don't show all
the kernel configuration options; there are simply too many of them, and most are
self-explanatory. We have highlighted only those that may require further explanation.
Remember that if you're not sure how to answer a particular question, the default answer is
often the best choice. When in doubt, it is also a good idea to type ? and check the help
message.

It should be noted here that not all Linux device drivers are actually built into the kernel.

Instead, some drivers are available only as loadable modules, distributed separately from the
kernel sources. (As mentioned earlier, some drivers can be either built into the kernel or

201

Chapter 7. Upgrading Software and the Kernel

compiled as modules.) One notable kernel driver available only as a module is the "floppy
tape" driver for QIC-117 tape drives that connect to the floppy controller.

If you can't find support for your favorite hardware device in the list presented by make
config, it's quite possible that the driver is available as a module or a separate kernel patch.
Scour the FTP sites and archive CD-ROMs if you can't find what you're looking for. In
the next section, Section 7.5, kernel modules are covered in detail.

Prompt for development and/or incomplete code/drivers

Answer yes for this item if you want to try new features that aren't considered stable
enough by the developers. You do not want this option unless you want to help test
new features.

Processor family (386, 486, 586/K5/5x86/6x86/6x86MX,
Pentium-Classic, Pentium-MMX, Pentium-Pro/Celeron/Pentium-ITI,
Pentium-III/Celeron/Coppermine, Pentium-4, K6/K6-II/K6-1I11,
Athlon/Duron/K7, Crusoe, Winchip-Co, Winchip-2, Winchip-
2A/Winchip-3, CyrixIII/C3) [Pentium-III/Celeron/Coppermine]

Here, you have to specify the CPU type that you have. The kernel will then be
compiled with optimizations especially geared toward your machine. Note that if you
specify a higher processor here than you actually have, the kernel might not work.
Also, the Pentium Il MMX is a 686, not a 586 chip.

Math emulation
Answer no if you have a Pentium or better. Answer yes to this item if you do not have
a floating-point coprocessor in your machine. This is necessary for the kernel to
emulate the presence of a math coprocessor.

Symmetric multi-processing support

This enables kernel support for more than one CPU. If your machine has more than
one CPU, say yes here; if not, say no.

Enable loadable module support

This enables the support for dynamically loading additional modules. You definitely
want to enable this.

Set version information on all symbols for modules
This is a special option that makes it possible to use a module compiled for one kernel

version with another kernel version. A number of problems are attached to this; say no
here unless you know exactly what you are doing.

202

Chapter 7. Upgrading Software and the Kernel

Kernel module loader

If you enable this option, the kernel can automatically load and unload dynamically
loadable modules as needed.

Networking support

Answer yes to this option if you want any sort of networking support in your kernel
(including TCP/IP, SLIP, PPP, NFS, and so on).

PCI support

Enable this option if your motherboard includes the PCI bus and you have PCI-bus
devices installed in your system. The PCI BIOS is used to detect and enable PCI
devices; kernel support for it is necessary for use of any PCI devices in your system.

System V IPC

Answering yes to this option includes kernel support for System V interprocess
communication (IPC) functions, such as msgrcv and msgsnd. Some programs ported
from System V require this; you should answer yes unless you have a strong aversion
to these features.

Sysctl support

This option instructs the kernel to provide a way to change kernel parameters on-the-
fly, without rebooting. It is a good idea to enable this unless you have very limited
memory and cannot tolerate the extra 8 KB that this option adds to the kernel.

Parallel port support

Enable this option if you have a parallel port in your system and want to access it from
Linux. Linux can use the parallel port not only for printers, but also for PLIP (a
networking protocol for parallel lines), ZIP drives, scanners, and other things. In most
cases, you will need an additional driver to attach a device to the parallel port.

Normal floppy disk support

Answer yes to this option unless you don't want support for floppy drives (this can
save some memory on systems where floppy support isn't required).

Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support

Answer yes to this option unless you don't need IDE/MFM/RLL drive support. After
answering yes, you will be prompted for types of devices (hard disks, CD-ROM
drives, tape drives, and floppy drives) you want to access over the IDE driver. If you
have no IDE hardware (only SCSI), it may be safe to disable this option.

203

Chapter 7. Upgrading Software and the Kernel

XT harddisk support

Answer yes to this only if you have an older XT disk controller and plan to use it with
your Linux system.

Parallel port IDE device support

This option enables support for IDE devices that are attached to the parallel port, such
as portable CD-ROM drives.

Networking options

SCSI

If you previously selected networking support, you will be asked a series of questions
about which networking options you want enabled in your kernel. Unless you have
special networking needs (in which case you'll know how to answer the questions
appropriately), answering the defaults for these questions should suffice. A number of
the questions are esoteric in nature (such as TP: Disable Path MTU
Discovery)and you should select the defaults for these in almost all cases.

support

If you have a SCSI controller of any kind, answer yes to this option. You will be asked
a series of questions about the specific SCSI devices on your system; be sure you
know what type of hardware you have installed. All these questions deal with specific
SCSI controller chips and boards; if you aren't sure what sort of SCSI controller you
have, check the hardware documentation or consult the Linux HOWTO documents.

You will also be asked if you want support for SCSI disks, tapes, CD-ROMs, and
other devices; be sure to enable the options appropriate for your hardware.

If you don't have any SCSI hardware, you should answer no to this option; it greatly
reduces the size of your kernel.

Network device support

This is a series of questions about the specific networking controllers Linux supports.
If you plan to use an Ethernet card (or some other networking controller), be sure to
enable the options for your hardware. As with SCSI devices, you should consult your
hardware documentation or the Linux HOWTO documents (such as the Ethernet
HOWTO) to determine which driver is appropriate for your network controller.

Amateur Radio support

This option enables basic support for networking over public radio frequencies. If you
have the equipment to use the feature, enable this option and read the AX25 and the
HAM HOWTO.

204

Chapter 7. Upgrading Software and the Kernel

ISDN subsystem

If you have ISDN hardware in your system, enable this option and select the ISDN
hardware driver suitable for your hardware. You will most probably also want to
select Support synchronous PPP (see Section 15.3 in Chapter 15).

0ld CD-ROM drivers

This is a series of questions dealing with the specific CD-ROM drivers supported by
the kernel, such as the Sony CDU31A/33A, Mitsumi, or SoundBlaster Pro CD-ROM,
and so on. If you have a SCSI or IDE CD-ROM controller (and have selected support
for it earlier), you need not enable any of these options. Some CD-ROM drives have
their own interface boards, and these options enable drivers for them.

Character devices

Linux supports a number of special "character" devices, such as serial and parallel port
controllers, QIC-02 tape drives, and mice with their own proprietary interfaces (not
mice that connect to the serial port, such as the Microsoft serial mouse). This section
also includes the joystick support and the "Video for Linux" drivers that support video
and frame-grabbing hardware. Be sure to enable the options corresponding to your
hardware.

Filesystems

This is a series of questions for each filesystem type supported by the kernel. As
discussed in the section Section 6.1, a number of filesystem types are supported by the
system, and you can pick and choose which to include in the kernel. Nearly all
systems should include support for the Second Extended and /proc filesystems. You
should include support for the MS-DOS filesystem if you want to access your MS-
DOS files directly from Linux, and the ISO 9660 filesystem to access files on a CD-
ROM (most of which are encoded in this way).

Console drivers

Make sure you select at least VGA text console in this section, or you won't be
able to use your Linux system from the console.

Sound card support
Answering yes to this option presents you with several questions about your sound
card, which drivers you wish to have installed, and other details, such as the IRQ and

address of the sound hardware.

Kernel hacking

This section contains options that are useful only if you plan on hacking the Linux
kernel yourself. If you do not want to do this, answer no.

205

Chapter 7. Upgrading Software and the Kernel

After running make config or its equivalent, you'll be asked to edit "the top-level Makefile,"
which means /usr/src/linux/Makefile. In most cases, it's not necessary to do this. If you
wanted to alter some of the compilation options for the kernel, or change the default root
device or SVGA mode, you could edit the makefile to accomplish this. Setting the root device
and SVGA mode can easily be done by running rdev on a compiled kernel image, as we saw
in Section 5.2.1 in Chapter 5.

If you wish to force a complete recompilation of the kernel, you should issue make clean at
this point. This removes from this source tree all object files produced from a previous build.
If you have never built the kernel from this tree, you're probably safe skipping this step
(although it can't hurt to perform it). If you are tweaking minor parts of the kernel, you might
want to avoid this step so that only those files that have changed will be recompiled. At any
rate, running make clean simply ensures the entire kernel will be recompiled "from scratch,"
and if you're in any doubt, use this command to be on the safe side.

Now you're ready to compile the kernel. This is done with the command make bzimage. 1t is
best to build your kernel on a lightly loaded system, with most of your memory free for the
compilation. If other users are accessing the system, or if you're trying to run any large
applications yourself (such as the X Window System, or another compilation), the build may
slow to a crawl. The key here is memory. If a system is low on memory and starts swapping,
it will be slow no matter how fast the processor is.

The kernel compilation can take anywhere from a few minutes to many hours, depending on
your hardware. There is a great deal of code — well over 10 MB — in the entire kernel, so
this should come as no surprise. Slower systems with 4 MB (or less) of RAM can expect to
take several hours for a complete rebuild; faster machines with more memory can complete it
in less than half an hour. Your mileage will most assuredly vary.

If any errors or warnings occur while compiling, you cannot expect the resulting kernel to
work correctly; in most cases, the build will halt if an error occurs. Such errors can be the
result of incorrectly applying patches, problems with the make config step, or actual bugs in
the code. In the "stock" kernels, this latter case is rare, but is more common if you're working
with development code or new drivers under testing. If you have any doubt, remove the kernel
source tree altogether and start over.

When the compilation is complete, you will be left with the file bzImage in the directory
/usr/src/linux/arch/i386/boot. (Of course, if you're attempting to build Linux on a platform
other than the Intel x86, the kernel image will be found in the corresponding subdirectory
under arch.) The kernel is so named because it is the executable image of the kernel, and it
has been internally compressed using the bzip2 algorithm. When the kernel boots, it
uncompresses itself into memory: don't attempt to use bzip2 or bunzip2 on bzlmage yourself!
The kernel requires much less disk space when compressed in this way, allowing kernel
images to fit on a floppy. Earlier kernels supported both the gzip and the bzip2 compression
algorithms, the former resulting in a file called z/mage. Because bzlmage gives better
compression results, however, gzip should not be used, as the resulting kernels are usually too
big to be installed these days.

If you pick too much kernel functionality, you can get a kernel too big error at the end
of the kernel compilation. This happens rarely because you need only a very limited amount

206

Chapter 7. Upgrading Software and the Kernel

of hardware support for one machine, but it can happen. In this case, there is one way out:
compile some kernel functionality as modules (see Section 7.5).

You should now run rdev on the new kernel image to verify that the root filesystem device,
console SVGA mode, and other parameters have been set correctly. This is described in
Section 5.2.1 in Chapter 5.

With your new kernel in hand, you're ready to configure it for booting. This involves either
placing the kernel image on a boot floppy, or configuring LILO to boot the kernel from the
hard drive. These topics are discussed in Section 5.2 in Chapter 5. To use the new kernel,
configure it for booting in one of these ways, and reboot the system.

A warning: you should always keep a known good kernel available for booting. Either keep a
previous backup kernel selectable from LILO or test new kernels using a floppy first. This
will save you if you make a mistake such as omitting a crucial driver in your new kernel,
making your system not bootable.

7.5 Loadable Device Drivers

Traditionally, device drivers have been included as part of the kernel. There are several
reasons for this. First of all, nearly all device drivers require the special hardware access
provided by being part of the kernel code. Such hardware access can't be obtained easily
through a user program. Also, device drivers are much easier to implement as part of the
kernel; such drivers would have complete access to the data structures and other routines in
the kernel and could call them freely.

A conglomerate kernel containing all drivers in this manner presents several problems. First
of all, it requires the system administrator to rebuild the kernel in order to selectively include
device drivers, as we saw in the previous section. Also, this mechanism lends itself to sloppy
programming on the part of the driver writers: there's nothing stopping a programmer from
writing code that is not completely modular — code which, for example, directly accesses
data private to other parts of the kernel. The cooperative nature of the Linux kernel
development compounds this problem, and not all parts of the code are as neatly contained as
they should be. This can make it more difficult to maintain and debug the code.

In an effort to move away from this paradigm, the Linux kernel supports loadable device
drivers — device drivers that are added to or removed from memory at runtime, with a series
of commands. Such drivers are still part of the kernel, but they are compiled separately and
enabled only when loaded. Loadable device drivers, or modules, are generally loaded into
memory using commands in one of the boot-time rc scripts.

Modules provide a cleaner interface for writing drivers. To some extent, they require the code
to be somewhat modular and to follow a certain coding convention. (Note that this doesn't
actually prevent a programmer from abusing the convention and writing nonmodular code.
Once the module has been loaded, it is just as free to wreak havoc as if it were compiled
directly into the kernel.) Using modules makes drivers easier to debug; you can simply unload
a module, recompile it, and reload it without having to reboot the system or rebuild the kernel
as a whole. Modules can be used for other parts of the kernel, such as filesystem types, in
addition to device drivers.

207

Chapter 7. Upgrading Software and the Kernel

Most device drivers, and a lot of other kernel functionality under Linux, are implemented as
modules. One of them is the floppy tape driver (or ftape driver), for tape drives that connect to
the floppy controller, such as the Colorado Memory Jumbo 120/250 models. If you plan to
use this driver on your system, it is good to know how to build, load, and unload modules.
While nobody stops you from compiling this module statically into your kernel, a tape drive is
something that you need only rarely (normally once a day or so), and its driver shouldn't
occupy valuable RAM during the times it is not needed. See the Linux fiape HOWTO for
more about these devices and supported hardware.

The first thing you'll need is the modules package, which contains the commands used to load
and unload modules from the kernel. On the FTP archive sites, this is usually found as
modules.tar.gz in the directory where the kernel sources are kept. This package contains the
sources to the commands insmod, modprobe, rmmod, and Ismod. Most Linux distributions
include these commands (found in sbin). If you already have these commands installed, you
probably don't need to get the modules package. However, it can't hurt to get the package and
rebuild these commands, to be sure that you have the most up-to-date version.

To rebuild these commands, unpack modules.tar.gz (say, in a subdirectory of /usr/src). Follow
the installation instructions contained there; usually all you have to do is execute make
followed by make install (as root). The three commands will now be installed in /shin and
will be ready to use.

A module is simply a single object file containing all the code for the driver. For example, the
ftape module might be called ftape.o. On many systems, the modules themselves are stored in
a directory tree below /lib/modules/kernelversion, where you can find different
directories for the various types of modules. For example, the modules compiled for the 2.4.4
kernel would be below /lib/modules/2.4.4. You might already have a number of modules on
your system; check the appropriate directory.

Modules can be either in the kernel sources or external to it. The former is the case for those
device drivers, filesystems, and other functionality that are used most often and are
maintained as part of the official kernel sources. Using these modules is very easy: during the
make config, make menuconfig, or make xconfig step, type m to build a feature as a module.
Repeat this for everything you want to compile as a module. Then, after the make bzImage
step, execute the commands make modules and make modules_install. This will compile the
modules and install them in /lib/modules/kernelversion. It is a good idea (for reasons to
be explained later in this section) to run the command depmod -a afterward to correct module
dependencies.

New modules that are not yet integrated into the official kernel sources, or those that are
simply too esoteric to be put into the kernel sources (e.g., a device driver for some custom-
built hardware that is not publicly available) can be available as stand-alone, external
modules. Unpack the archive of this module, compile it according to the instructions that are
hopefully included, and copy the resulting module file to the appropriate subdirectory of
/lib/modules/kernelversion. Some modules might have an install script, or allow you to
issue the command make install to perform the last step.

Once you have a compiled module (either from the kernel sources or external), you can load it
using the command:

208

Chapter 7. Upgrading Software and the Kernel

insmod module

where modu I e is the name of the module object file. For example:

insmod /lib/modules/2.4.4/kernel/drivers/char/ftape/lowlevel/ftape.o
installs the ftape driver if it is found in that file.

Once a module is installed, it may display some information to the console (as well as to the
system logs), indicating that it is initialized. For example, the ffape driver might display the
following:

ftape v1.14 29/10/94 (c) 1993, 1994 Bas Laarhoven (bas@vimec.nl)
QIC-117 driver for QIC-40 and QIC-80 tape drives

[000] kernel-interface.c (init module) - installing QIC-117 ftape\
driver....

[001] kernel-interface.c (init module) - 3 tape buffers @ 001B800O0.

[002] calibr.c (time inb) - inb() duration: 1436 nsec.

[003] calibr.c (calibrate) - TC for 'udelay()' = 2944 nsec (at 2049\
counts) .

[004] calibr.c (calibrate) - TC for 'fdc wait()' = 2857 nsec (at 2049\
counts) .

The exact messages printed depend on the module, of course. Each module should come with
ample documentation describing just what it does and how to debug it if there are problems.

It is likely that insmod will tell you it could not load the module into the kernel because there
were "symbols missing." This means that the module you want to load needs functionality
from another part of the kernel that is neither compiled into the kernel nor contained in a
module already loaded. You could now try to find out which module contains those functions,
load that module first with insmod, and try again. You will eventually succeed with this
method, but it can be cumbersome, and this would not be Linux if there weren't a better way.

You first need a module database in the file /lib/modules/kernelversion/modules.dep.
You can create this database by calling:

depmod -a

This goes through all the modules you have and records whether they need any other
modules. With this database in place, you can simply replace the insmod command with the
modprobe command, which checks the module database and loads any other modules that
might be needed before loading the requested module. For example, our modules.dep file
contains — among others — the following line:

/lib/modules/2.4.4/kernel/drivers/isdn/hisax/hisax.o: /lib/modules/2.4.4/
kernel/drivers/isdn/isdn.o

This means that in order to load the hisax module (a device driver for a number of ISDN
boards), the isdn module must be loaded. If we now load the hisax module with modprobe
(this example is slightly simplified because the Zisax module needs additional parameters):

modprobe hisax

209

Chapter 7. Upgrading Software and the Kernel

modprobe will detect the dependency and load the isdn module. If you have compiled a
module for the current kernel, you first need to run depmod -a, though, so that modprobe can
find it.

Some modules need so-called module parameters. For example, a device driver might need to
be assigned an IRQ. You <can pass those parameters in the form
parameter name=parameter value with both the insmod and the modprobe
command. In the following example, several parameters are passed to the sisax module:

tigger # modprobe hisax type=3 protocol=2 io=0x280 irq=10

The documentation for each module should tell you which parameters the module supports. If
you are too lazy to read the documentation, a nifty tool you can use is modinfo which tells you
— among other things — which parameters the module specified as the argument accepts.

One caveat about modules if you use the Debian distribution: Debian uses a file called
/etc/modules that lists the modules that should be loaded at boot time. If a module that you do
not want keeps reappearing, check whether it is listed here.

You can list the drivers that are loaded with the command Ismod, as in:

rutabaga% lsmod
Module: #pages: Used by
ftape 40

The memory usage of the module is displayed as well; under Linux on an Intel x86 system, a
page is 4 KB. The fitape driver here is using 160 KB of memory. If any other modules are
dependent on this module, they are shown in the third column.

A module can be unloaded from memory using the rmmod command, as long as it is not in
use. For example:

rmmod ftape
The argument to rmmod is the name of the driver as it appears in the /smod listing.

Once you have modules working to your satisfaction, you can include the appropriate insmod
commands in one of the rc scripts executed at boot time. One of your rc scripts might already
include a place where insmod commands can be added, depending on your distribution.

One feature of the current module support is that you must rebuild a module any time you
upgrade your kernel to a new version or patch level. (Rebuilding your kernel while keeping
the same kernel version doesn't require you to do this.) This is done to ensure that the module
is compatible with the kernel version you're using. If you attempt to load a module with a
kernel that is newer or older than that for which it was compiled, insmod will complain and
not allow the module to be loaded. When rebuilding a module, you must be running the kernel
under which it will be used. Therefore, when upgrading your kernel, upgrade and reboot the
new kernel first, then rebuild your modules and load them. There is an option that allows you
to keep your modules when switching kernels, but a number of problems are associated with
it, and we recommend against using it.

210

Chapter 7. Upgrading Software and the Kernel

7.6 Loading Modules Automatically

The automatic loading of modules is an especially useful feature which is implemented by a
kernel component called kmod. With the help of kmod, the kernel can load needed device
drivers and other modules automatically and without manual intervention from the system
administrator. If the modules are not needed after 60 seconds, they are automatically unloaded
as well.

In order to use kmod, you need to turn on support for it (Kernel module loader) during
kernel configuration in the Toadable module support section.

Modules that need other = modules must be correctly listed in
/lib/modules/kernelversion/modules.dep, and there must be aliases for the major and
minor number in /etc/conf-modules. See the documentation from the modules package for
further information.

If a module has not been loaded manually with insmod or modprobe, but was loaded
automatically by the kernel, the module is listed with the addition (autoclean) in the
Ismod output. This tells you that the kernel will remove the module if it has not been used for
more than one minute.

We have gone through quite a lot of material now, and you should have all the tools you'll
need to build and maintain your own kernels.

211

Chapter 8. Other Administrative Tasks

Chapter 8. Other Administrative Tasks

After reading the previous three chapters, you now have all the skills you need to start using
your system. But eventually you'll want the information in this chapter too. Some of
the activities, such as making backup tapes, are important habits to develop. You may also
find it useful to have access to files and programs on MS-DOS and Windows. Finally, we'll
help you handle events that you hope will never happen, but sometimes do — system panics
and corruption.

8.1 Making Backups

Making backups of your system is an important way to protect yourself from data corruption
or loss in case you have problems with your hardware, or you make a mistake such as deleting
important files inadvertently. During your experiences with Linux, you're likely to make quite
a few customizations to the system that can't be restored by simply reinstalling from your
original installation media. However, if you happen to have your original Linux floppies or
CD-ROM handy, it may not be necessary to back up your entire system. Your original
installation media already serve as an excellent backup.

Under Linux, as with any Unix-like system, you can make mistakes while logged in as root
that would make it impossible to boot the system or log in later. Many newcomers approach
such a problem by reinstalling the system entirely from backup, or worse, from scratch. This
is seldom, if ever, necessary. In Section 8.6, later in this chapter, we'll talk about what to do in
these cases.

If you do experience data loss, it is sometimes possible to recover that data using
the filesystem maintenance tools described in Section 6.1.5 in Chapter 6. Unlike some other
operating systems, however, it's generally not possible to "undelete" a file that has been
removed by »m or overwritten by a careless cp or mv command (for example, copying one file
over another destroys the file to which you're copying). In these extreme cases, backups are
key to recovering from problems.

Backups are usually made to tape, floppy or CD-R(W). None of these media is 100% reliable,
although tape and CD-R(W) are more dependable than floppy in the long term. Many tools
are available that help you make backups. In the simplest case, you can use a combination of
gzip (or bzip2) and tar to back up files from your hard drive to floppy or tape. This is the best
method to use when you make only occasional backups, no more often than, say, once
a month.

If you have numerous users on your system or you make freque