\NOSIntro

TCP/IP over
Packet Radio

An introduction
to the KA9Q Network
Operating System

'

R

lan Wade
G3NRW

NOSintro

TCPI/IP over
Packet Radio

An Introduction to the KASQ
Network Operating System

lan Wade
G3NRW

NOSintro
TCP/IP over Packet Radio
An Introduction to the KASQ Operating System

Copyright © 1992 Dowermain Ltd
ISBN 1-897649-00-2

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing from the
publisher. All rights of translation reserved.

Published by Dowermain Ltd, Maxet House, Liverpool Road, Luton,
Bedfordshire LU1 1RF, United Kingdom.

Printed by Maslands, Edward Neate House,
Unit 12, Howden Industrial Estate, Tiverton, Devon EX16 SHW, UK.

Text set in TrueType with Microsoft Word for Windows, version 2.0.
Graphics produced with Micrografx Windows Draw!, version 3.0.

Cover design by Jim Housego.
First edition. November 1992.

How to contact the author:

AMPRnet [TCP/IP}: g3nrw @ g3nrw.ampr.org [44.131.5.2]
AX.25 Packet Radio: G3NRW @ GB7BIL#27.GBR.EU
Electronic Mail: g3nw @ dircon.co.uk

Post Office Mail: Mr lan Wade
7 Daubeney Close
Harlington
Dunstable
Bedfordshire
LUS5 6NF, United Kingdom

CONTENTS

Chapter

BN

OWO~N®

It to' NOSINIG oaanminwansiesamnsaag 1
NOSVIBWoovnreissesismeistsnsistmaississsovisissimaiis, T
The Ground RUIEScociiviiiiiiiiiieieceevviiaene 11
NOSinaNutshellccooviveiiiiieeieeeeeeiae. 19
Let's Meetthe Localsccocoevvveveeeiieineeeenn. 33
The TNC Revisitedc.coovvvveeiviieierinernnrinnenns 37
A Peek at Protocolscccoovvveeeiiiiciieieiiiieeeens 49
Names, Domains and Addresses 55
O 1= 01 ST A= RO 63
Hands On — Hardware Checkout 71
Hands On — Software Installation 75
NOS File Compendiumc.cccevveveeeeiinnenn. 83
Hands On — Session Manager 95
The NOS Command Set Summary 109
Hands On — autoexec.nosc.cccccceeeeennen 115
Tha flpusers Filec..cimiine 123
Hands Oni—FTP .cocumimsosammmassmss 129
NOS BBS — The Big Picture 141
Setting up the NOSBBSccceeevveeee... 165
The NOS BBS Command Set 161
Hands On — NOS BBS File Server 173
Hands On — Remote Sysopcccceviienenne 181
Forwarding SMTP Mailccoovvvvenirieiennnne 185
Pop Mail Collectionc..ccceeeeevvviieeiieeieeens 211
PBBS Mail Forwardingcccceveeerrinvinnenens 217

26 AX.25 ROULING ...coooiieiieaiiiieee e 231
27 Address Resolution Protocol 235

28 |P Routing .. SO RRPRPUBRID”A 1
29 NET/ROM Routlng 251
30 Going Live: Preparing the Files 263
31 HandsOn—AX25 ..., 267
32 Hands On — NET/ROMccccoevveenieeeeninnnns 275

33 Hands On —Ping and Hopc.ccccveeee... 279
34 Hands On — Domain Name System 287

35 Traling Flag ociminuanssisnsss 293
Appendix1 Where to get the Softwareccoc..... 295
2 NOS Command Set Reference 297

3 NOS Control Files . T T e 1 0 |

4 Character Codes .. PTG . 1 |

5 AMPRnetIP Address Coordmators R

6 REfErenCescooceeeiiiiiiiiiieciiiiiieeririreaersnanes 341

e (= ORI 343

1: INTRO TO NOSintro

Welcome to NOSintro, the beginner’s guide to running TCP/IP over
Packet Radio.

In this book you’ll find a wealth of practical information, hints and tips
for setting up and using the KA9Q Network Operating System (NOS).
The emphasis throughout is on hands-on practicalities. You’ll see
exactly how to install NOS on a PC, how to set up the control files to
suit your local environment, how to check out basic operations off-air
before going live, and how to use NOS commands for transferring files,
logging in to remote systems, sending mail, and so on.

Theoretical coverage is kept to a minimum — there are plenty of other
publications describing the minutiae of TCP/IP and related packet
protocols if you want to dig deeper. In this book there is just enough
theoretical background to provide a framework for the hands-on
sessions, so you get a good understanding of what’s happening without
being submerged in a morass of superfluous detail.

NOS and related packages such as NET run on all of the well-known
families of microcomputers. These include the Apple Macintosh,
Amiga, Archimedes, Atari, DEC VAX, IBM PC and Sun, running
under MS-DOS, 08/2, VMS and various flavours of UNIX. This
book is specifically about the PC version of NOS, but the other
versions work in virtually the same way, so almost everything you read
here is applicable to those versions as well.

NOS is a complex package, and requires you to set up a number of
control files before you can use it. This isn’t a difficult job, but there is
quite a lot of work involved. To help get you on the road, this book
contains full listings of typical NOS control files, which you can
modify to suit your own environment.

Better still, you can obtain a copy of the G3INRW NOSview on-line
documentation package for NOS. NOSview contains not only full
reference documentation for NOS, but also a complete working set of

intro to NOSintro @

NOS software. This includes NOS itself and all of the control files
listed in this book. You should get hold of NOSview if you can and
install it on your PC, as the worked examples in this book relate
directly to the files that come with the package. Full details of how to
get NOSview are in Chapter 2.

I’ve said that this is a book for beginners to TCP/IP. The level is
pitched at people who already know how to drive a PC at the MS-DOS
command line, and how to make “ordinary” AX.25 packet radio
connections with a conventional terminal node controller (tnc).
Experience in sending and receiving messages via an AX.25 packet
bulletin board system (PBBS) is also assumed.

In a book of this kind, it’s impossible to explain everything about NOS.
NOS is a big, complex package, with many more features than most
commercial packages costing hundreds of dollars, and so it’s only
possible to scrape the surface here. My main hope is that there is more
than enough information to get you started, with plenty of clues as we
go along about what to explore next. In fact, the first two drafts of this
book were much longer than originally intended, and savage wielding of
the scalpel was eventually necessary to bring it down to a reasonable
size. Given time, I plan to use some of the excised material in a follow-
up book which will cover the advanced capabilities of NOS in much
more detail.

NOS originally grew up in the world of amateur radio, but in more
recent times it has found its way into “professional” environments as
well. If you are a networking professional reading this book, please
don’t be misled by the word “amateur”. Most of the techniques, the
software and the networking infrastructures described here are the work
of internationally respected professionals and academics, who also
happen to be licensed radio amateurs.

The great attraction of the amateur environment is that people are free
to experiment at will, without the constraints of fixed project goals and
timescales, or bosses looking over their shoulders. Indeed, many of the
techniques which are commonplace in the professional field today were
originally developed by amateurs.

There’s certainly nothing “amateurish” about NOS. You can install
NOS on your PC in the office and connect into your LAN (or WAN or
SLIP link), and you can use ping, ftp, telnet, mail, news, ppp and all
the other well-known Internet services in exactly the same way that you
probably do now. The big advantage of NOS is that it provides much

@ Intro to NOSintro 3

greater functionality than you’ll find in most commercial packages, and
it’s free.

Reading a work of this nature is not a trivial undertaking. The best
way to start is to spend an evening speed-reading the whole book from
cover to cover, just to get the feel of it. Don’t worry if there are parts
you don’t understand — just skip them and move on. Then read the
book again, a little slower this time, perhaps taking a week of evenings
to do so. If there are sections you still don’t understand, skip them and
read on to the end of the chapter. Then go back to the beginning of the
chapter and read it again. Don’t be afraid to dip and dive into different
parts of the book to fill in the blanks — eventually the whole picture
will become clear.

By then you should have a fairly good idea of what TCP/IP and NOS
are about. The next step is a must: you must install NOS (ideally with
NOSview) on your PC, so that you can try out the commands at first
hand. Then read through the book yet again, this time concentrating on
the hands-on sessions. Only at this point, when you type in NOS
commands and see the results of your actions, will you really begin to
understand what’s happening.

All of this takes place with the radio switched off. When you
eventually feel confident that you understand most of the capabilities of
NOS, you are ready to modify the NOS control files to suit your own
environment. You’ll be replacing the dummy radio callsigns, network
addresses and other parameters listed in this book with real callsigns,
etc, and then you can switch the radio on and try out NOS on-air.

Chances are that if you follow these steps — it may take three or four
weeks of spare time before you are ready for live tests — you’ll be
rewarded with almost everything working perfectly first time. Now you
can login to other stations, transfer files, send mail, forward mail onto
the PBBS network, run a NET/ROM node, etc, etc, and very quickly
you’ll be hooked! New avenues of exploration will open up, new
software will come along to experiment with (TCP/IP is the growth
area in networking software development these days), and I guarantee
that there will always be something new to learn and try.

What if you can’t make things work? The best people to help are
obviously your neighbours who are already using TCP/IP, or you can
put out a general bulletin on the PBBS network asking for advice.

If you are still having difficulties, I will be pleased to try to answer
your queries. Full contact details follow immediately after the title
page of this book. In general I would prefer to receive messages by
packet radio or email, but if you write a letter, please enclose an SASE
(and IRCs if appropriate) for your reply.

Note that my experience of NOS is with various MS-DOS
implementations based on original versions from KA9Q. I haven’t run
NOS on any other platform. Therefore if you have specific detailed
questions on the other platforms, please address them elsewhere; I don’t
want to mislead you with second guesses!

Acknowledgements

NOSintro is based on the work of many people. In the list below I
hope I’ve included all of those who have written NOS software and
documentation in the past, and who have played a significant part in the
development of the amateur TCP/IP packet radio network throughout
the world.

The number one acknowledgement goes, of course, to Phil Karn,
KA9Q, the father of NOS. Phil has demonstrated to the world that it’s
possible to build a powerful, fully functional multi-tasking
communications system, conforming to international networking
standards, on the back of a primitive, memory-constrained, single-
tasking operating system. It shouldn’t work, but it does.

What’s more, Phil has made his software freely available to the world,
and several other people have now used it as a starting point for further
development. Without Phil’s contribution, it’s unlikely that the
amateur packet network would be anything like as advanced as it is
today.

© Intro to NOSintro 5

Now the roll call of other major contributors (in last name order):

John Ackermann, AGO9V
Hayden Bate, GRAMD
Dave Brooke, G6GZH
Mike Chace, G6DHU

Tom Clark, W3ITWI

Mike Dent, G6PHF

D R Evans, G4AMIJ/NQOI
Gary Ford, N6GF

Dan Frank, WONK

Bdale Garbee, N3EUA
Fred Goldstein, K110
Gerard van der Grinten, PAOGRI
Allen Gwinn, NK5CKP
Charles Hedricks

Kelvin Hill, GIEMM
Gareth Howell, GGKVK
Pavel Jalocha, SP9VRC
Brian Kantor, WB6CYT
Anders Klemets, SMORGV
Wally Linstruth, WA6JPR
Peter Meiring, GOBSX
Russell Nelson

Johan Reinalda, WG7J/PA3DIS
Bill Simpson

Mike Stockett, WA7DYX
Paul Taylor, GIPLT

Dave Trulli, NN2Z

Stanley Wilson, AKOB

If you are missing from the list and feel you should be there, please
don’t be offended. Treat it as an inadvertant omission on my part. If
you care to drop me a line I’ll be glad to add your name to the credits in
the next edition of NOSintro.

Good luck with TCP/IP. You’ll have fun!
73

Jan Wade, G3ANRW

November 1992

2: NOSview

NOSview is an on-line public domain documentation package for the
KA9Q Network Operating System (NOS). First released in September
1991, NOSview is a complete reference work describing in detail all of
the commands to be found in the major NOS releases. This chapter
outlines its main features, and how to get a copy.

Introducing NOSview

Over the years, many documents have appeared on the networks
describing various features of NOS, but much of that material is
incomplete. Some of it is inaccurate, and, because it was written and
edited by many hands, sometimes very misleading and inconsistent.

In NOSview I have attempted to pull together all the available
documentation and massage it into a consistent whole. The final
product is almost 300 pages long, around 20 percent being new
material. All of the NOS commands are described in detail, and there
is at least one example included with each command. There are also
many examples of display outputs, showing the results of executing the
commands.

Consistency

Because NOS contains software modules originating from several
different sources, the associated documentation inevitably contains
inconsistencies.

For example, the words label and interface apparently describe
different objects, whereas in actuality they are the same thing. On the
other hand, the word address can have different meanings, depending
on the command.

NOSview @

A lot of effort has gone into NOSview to eliminate these
inconsistencies. Command parameter names are now consistent
throughout. Callsigns in the examples follow a set pattern: calls for
NOS stations are in the NS9xxx series, vanilla AX.25 stations are
AX%00x, NET/ROM stations are NR%xoxx, and so on.

Also, to distinguish between IP hostnames and AX.25 callsigns,
hostnames are shown in lower case (ns9bob), whereas AX.25 callsigns
are in upper case (NS9BOB-3).

These seemingly simple rules make a tremendous difference to the
readability of the documentation. There is now no doubt about whether
a parameter should be an IP hostname or an AX.25 callsign, or whether
you need an IRQ number or an interrupt vector address, and so on.

rcute add default tncO
route add ns%jim tncl
route add 1922.3.4.5 sl0 (no gatew

point-to-p

route addprivate <target host>[/bits] | default
[<gateway host> [<metric>]

The 'route addprivate' command is identical to !
that it also marks the new entry as private; it
included in ocutgoing RIP updates.

>> Example: route addprivate regiondl/24 ns9bob

route drop <target host>[/bits]

The 'route drop' command deletes an entry from t
packet arrives for the deleted address and a def
effect, it will be used.

Fig 2-1: On-line NOS documentation with NOSview. There is a
separate help file for each NOS command, selected from the
pop-up FILES menu.

® NOSview 9

NOSview On-line

But this is only half the story. The real power of NOSview comes into
its own when used with VIEW, a public domain file viewer which is
included with NOSview. VIEW lets you hot-key to the NOSview
documentation without breaking out of NOS, providing instant on-line
help whenever you need to know what to do next.

Figure 2-1 opposite shows an example of the VIEW screen. To take
full advantage of VIEW, NOSview is supplied as a set of over 90
individual help files, one file for ecach NOS command. This provides
immediate access to the command of interest, saving time and effort
when searching for detailed information.

A further benefit of supplying NOSview as individual files, rather than
as one monolithic document, is that you can place the files in your NOS
public directory. Then when someone logs into your system, they can
download selected NOSview information in manageable pieces, rather
than saturate the network for hours on end trying to download one
enormous file.

NOSgas: The NOS Get-Away Special

Yet another feature of NOSview is that it contains a complete working
set of NOS software, dubbed NOSgas — the NOS Get-Away Special.
NOSgas incorporates a complete set of supporting files (such as
autoexec.nos, fipusers and so on) which you can use on your system.
The templates are accompanied by full descriptions of their formats,
plus warnings about the “gotchas” which can cause lots of frustration
if you are unaware of them.

All you have to do is edit these templates to match your system (by
modifying callsigns, etc), and you have a ready-made environment to
try out NOS.

How to get NOSview

The current release of NOSview is version 244; i.e. released in 1992,
week 44. By now, NOSview should be available on the major
telephone bulletin boards worldwide, and also on Internet host ucsd.edu

10 NOSview @

in directory hamradio/packet/icpip/docs. Look for the files
NOSVIEW.ZIP and NOSVW244.ZIP.

Alternatively, you can get a free copy by sending me a clean DOS-
formatted diskette (any size except 360K) and return mailer to the
address on the reverse of the title page of this book. Note that 1 can
only supply NOSview for DOS machines (i.e. running under DR-DOS,
MS-DOS or PC-DOS).

Please enclose return postage with your mailer as follows:

United Kingdom: UK postage stamps
Europe: 3 IRCs
The Americas: 7IRCs
Rest of World: 9IRCs

Any unused IRCs will of course be returned.

Other Versions of NOS

Appendix 1 contains a list of people you can contact to obtain other
versions of NOS for non-DOS platforms.

1

3: THE GROUND RULES

This book contains many abbreviations and acronyms, and a lot of
networking and computer jargon. Many of these terms mean different
things to different people, and even the experts use the same words in
quite different ways. So to pull everything together, this chapter
presents a unified description of these words and abbreviations,
explaining how they are used in the book. Having defined the
terminology and the ground rules here, the rest of the book should then
be much easier to read.

Abbreviations and Acronyms

PC: Personal Computer, in the widest sense, not just an IBM PC
running DOS. Although this book specifically describes the IBM
PC environment for NOS, most of what you see is equally
applicable to the other popular machines such as Apple Macintosh,
Amiga, Atari, and so on.

DOS: Disk Operating System. This means Digital Research’s
DR-DOS, Microsoft’'s MS-DOS or IBM’s PC-DOS, or any of the
many vendor-specific work-alikes.

NOS: Network Operating System. This is the basic TCP/IP software
package and the subject of this book. Earlier PC versions were
known as NET, and some versions for other platforms are still
known as NET. The examples in this book are based on PAOGRI’s
NOS version 2.0m released in Summer 1992, which is in turn based
on KA9Q’s version of 29 December 1991. Other currently
available DOS versions of NOS include WNOS and JNOS.

NET/ROM: This is the networking software for switching nodes
from Software 2000, or work-alike packages such as TheNet.

12

The Ground Rules ©

Networking Protocols

The world of data communications is overflowing with abbreviations,
acronyms and protocols. Here is a checklist of the protocols used in
NOS:

AMPRnRet: Amateur TCP/IP Packet Radio Network.

ARP: Address Resolution Protocol. Handles the association between
IP hostnames and AX.25 callsigns or Ethernet adapter addresses.

AX.25: Amateur X.25 Link Layer Protocol. Handles level 2 frame
transfer between stations.

AXIP: AX.25 over IP protocol. Used for encapsulating AX.25 packet
frames for transmission through an IP “wormhole”.

BOOTP: Boot Protocol. Used for bootstrapping NOS.

FINGER: Finger Protocol. Allows users to find out about other
users.

FTP: File Transfer Protocol. The principal protocol for transferring
ASCII and binary files between stations.

ICMP: Internet Control Message Protocol. Handles IP transmission
errors.

IP: Internet Protocol. The workhorse network protocol in the TCP/IP
combination.

KISS: “Keep It Simple, Stupid!” Protocol. Handles data transfer
between the host computer and the tnc.

NET/ROM: Handles Transport Layer data transfer.

NNTP: Network News Transfer Protocol. Handles distribution of
news files.

NRS: NET/ROM control protocol for managing an external (non-
NOS) NET/ROM node.

PING: Packet Internet Groper protocol. Used for checking the
availability of other stations.

POP, POP2, POP3: Post Office Protocols. Handle reverse
forwarding of SMTP mail.

PPP: Point-to-Point Protocol. Handles serial link data transfers.

® The Ground Rules 13

RIP: Routing Information Protocol. Handles IP routing table
broadcasts.

RLOGIN: Remote login. Allows login to remote computers.

RSPF: Radio Shortest Path First protocol. Another protocol for
handling IP routing table broadcasts.

SLIP: Serial Link Internet Protocol. Another point-to-point serial
link protocol.

SLFP: Serial Link Frame Protocol. Handles serial link compression.
SMTP: Simple Mail Transfer Protocol. Handles the forwarding and
reception of mail.

TCP: Transmission Control Protocol. Handles reliable virtual
circuits between stations, flow control and error recovery (e.g.
duplicate or missing packets).

TELNET: Remote login. In NOS systems, handles login to the NOS
BBS.

TIP: Terminal Interface Protocol. Handles direct communication
with a serial port, character-by-character, with no additional
protocol overhead. Can be used for initialising a tnc or modem.

TTYLINK: Chat Protocol. Handles interactive character-by-
character conversations.

UDP: User Datagram Protocol. Handles one-shot data transfers
(which may get lost en-route).

UUENCODE: Encodes binary files into ASCII prior to transmission.
UUDECODE: Decodes uuencoded files from ASCII back to binary.

Conventions

NOS is based on software which has been around for a long time in the
UNIX world. This means that many of the UNIX conventions apply.

NOS commands are case-sensitive. That is, they consist entirely of
lower-case letters; for example, NOS understands the command session
but doesn’t understand SESSION or Session or SeSsIoN, or any other
variation containing capital letters.

14 The Ground Rules ©

Unlike UNIX or DOS, NOS understands abbreviated commands. You
can abbreviate most commands down to one or two letters, provided the
abbreviation is still unique. For example, NOS understands sess or ses
or even se to mean session, but s by itself is ambiguous, as there are
several other commands beginning with the letter s.

In this book, command names are given in full for clarity.

NOS file paths use forward slashes (/), not backslashes (\) like DOS.
Thus you will see NOS filenames written like /spool/mail/sysop.xt, not
\spool\mail\sysop.txt. Also, NOS filenames are in shown in lower-
case.

All NOS directories are rooted on DOS drive letter N: — thus the NOS
file /spool/mail/sysop.txt corresponds to the DOS file
NASPOOL\MAII\SYSOP.TXT. In this book, we define the NOS root
with the command:

|! SUBST NW: C:\NOS !I

and so the NOS file /spool/mail/sysop.txt is really the DOS file
C:\NOS\SPOOL\MAIL\SYSOP.TXT,

For the few DOS-specific files described in this book, the usual DOS
conventions apply. That is, they are written in upper-case and with
backslashes; e.g. C:\DOS\ANSILSYS.

Station Identification

To run NOS you will need to choose an IP hostname. This is the name
of your system by which other TCP/IP stations will know you, and will
normally be your callsign. In this book, IP hostnames are in lower-
case; e.g. ns9bob.

To distinguish between IP hostnames and AX.25 callsigns, the latter
are in upper-case; .g. NS9BOB-5.

©® The Ground Rules 15

Almost all callsigns in this book are fictitious. The following prefixes
apply to make it easier to distinguish between different types of station:

e ns9.. NOS (TCP/IP) station
e NR9.. NET/ROM node

o AX9.. AX.25 end-user station
e BB7.. AX.25 PBBS station

NET/ROM aliases in this book are of the form #<suffix>. For
example, ns9bob has the alias #BOB. (In reality, the choice of alias is
largely a matter of personal preference, but usually it begins with # or
the letters IP or TCP, to distinguish it from ordinary NET/ROM
aliases).

Keyboard Characters
The following abbreviations apply:

e CR carriage-return (enter)

e \r carriage-return (enter)

e LF line-feed (newline)

o A the CTRL key (e.g. *Z means control-Z)

e CTRL the CTRL key
e SHIFT the SHIFT key

o ALT the ALT key
e ESC the ESCAPE key
e Fn Function Key n

Mail and Bulletin Boards

The generic word mail encompasses personal messages and public
bulletins.

PBBS: The PBBS is the traditional packet bulletin board system,
featuring the familiar AX 25 mailer (using commands like SP to
send mail, R to read it, and so on).

16 The Ground Rules ®

NOS BBS: The NOS BBS is the bulletin board system built into
NOS. This handles AX.25 mail in the same way as a PBBS, and
also handles SMTP mail for AMPRnet/Internet.

External mailers (such as PCElm, ELM and BM) are alternative
programs to handle SMTP mail. You can run these programs
completely separately from NOS, or you call them from within
NOS with the mail command.

PMS: A PMS is the Personal Messaging System built in to
conventional tncs.

The Terminal Node Controller
The tnc operates in three basic modes:

Native Mode is the normal mode for which the tnc was originally
designed. That is, it lets you access the packet network directly
from the keyboard, by giving commands in response to the familiar
cmd: prompt. The tnc controls everything to do with sending and
receiving AX .25 packets, and does not even need a host computer
(all that is required is a dumb terminal).

Host Mode requires the use of a host computer with the tnc. The host
computer takes over virtually all of the functionality of the tnc,
allowing a much greater degree of control, but is still restricted to
sending and receiving AX.25 packets.

KISS (Keep it Simple, Stupid!) Mode is a variation of host mode.
The host computer runs almost all of the network software, and
communicates with the tnc using the KISS protocol. In KISS mode,
the tnc can handle all the protocols supported by AMPRnet,
Internet, NET/ROM and AX.25.

Origin/Target and Source/Destination

When sending information via intermediate stations, it is important to
understand the distinction between terms like origin, source,
destination and target. In this book, these terms are used as follows
(see Fig 3-1):

® The Ground Rules 17

Origi
Target
Source 3
Destination §

Fig 3-1: Origin and Target refer to the extreme end-points of
communication. Source and Destination refer immediate
neighbours.

Origin: is the station originating the information. If you are sending a
message to somebody else, your station is the origin.

Target: is the final intended recipient of your information.
Source: is the station transmitting the information at this point.
Destination: is the station receiving the information at this point.

Thus, referring to Fig 3-1, station A is the origin of the information,
and station D is the final target. For the path between A and B, A is
the source and B is the destination, and for the path between B and C,
B is the source and C is the destination, and so on:

We’ll see that the situation can get quite complicated when considering
a multi-layer path between NOS stations, where the end-to-end path
may take in IP gateways, NET/ROM nodes and AX.25 digipeaters. In
this situation it’s very important to keep a clear head when referring to
source and destination, as these terms may refer to different stations at
the different network layers.

Routers and Gateways

TCP/IP has been around for several years, and a whole vocabulary has
grown up around it. More recently, the International Standards
Organisation (ISO) has formulated the Open Systems Interconnection
(OSI) model — the so-called 7-layer model —to describe network
communications, and this too has its own vocabulary and jargon.

It turns out that there is some commonality between the TCP/IP and
OSI models, but there is also a lot of overlap and conflict, with the

18 The Ground Rules ©

same terms having quite different meanings in the two models.
Predictably, this can cause a lot of confusion. This is not the place to
compare the two models; instead we will say here that the TCP/IP
terminology will be used throughout most of this book, with just
occasional references to the OSI model for comparison.

The main candidate for confusion is the word gateway. In the TCP/IP
world it is referred to as an IP gateway, which corresponds roughly to
an OS] Router (and is nothing to do with an OSI gateway).

19

4: NOS IN A NUTSHELL

This chapter provides a brief overview of the KA9Q Network
Operating System (NOS).

NOS is a multi-tasking operating system that provides an extremely
flexible and powerful set of communications services for use on packet
radio networks, telephone lines and local area networks. NOS supports
most of the commonly used Internet protocols such as TCP, IP,
TELNET, FTP, SMTP and so on, plus the packet radio protocols
AX.25, NET/ROM and PBBS mail.

With NOS you can communicate with virtually any kind of computer
(Fig 4-1). An Amstrad can talk to an Apple, an Amiga can talk to an
IBM mainframe, a laptop PC can talk to a Cray, and so on. What’s
more, you can send electronic mail via worldwide networks, and you
can even log into remote systems, just as if you were directly connected
to them.

NOS supports the AMPRnet (Amateur Packet Radio network), which
rides on the back of the Internet protocols. These protocols are
operating system independent. This means, for example, that you can
run NOS en a PC running DOS or UNIX/XENIX, or a DEC VAX
running VMS, or a Sparc workstation running SunOS. You can send
binary or ASCII files between them, handle mail, and set up gateways
to link different types of network.

Probably the most important aspect of NOS is that all of these
protocols and services conform to internationally agreed standards,
and are available in one form or another on virtually every micro, mini
and mainframe system in use today. This means that you are not
locked into non-standard software (such as YAPP or 7PLUS) that
nobody outside the amateur world understands, and you can
communicate with almost any type of computer in the world in exactly
the same way. NOS is truly an Open System.

20

NOS in a Nutshell @

UNIX

—

st

VMS AMPRnet

SunOS

lntémet

NET/ROM

nio1]

Fig 4-1: NOS provides connectivity with AMPRnet, Internet,

NET/ROM and AX.25

© NOS in a Nutshell 21

There’s more. As well as supporting TCP/IP and AX.25, NOS also
understands NET/ROM. You can even set up your own NET/ROM
node if you want to.

Why support NET/ROM? Well, in the ideal world, all NOS systems
would talk TCP/IP directly to each other, and would handle node-to-
node routing at the IP level. Unfortunately we have yet to reach this
ideal state, so in most cases we have to rely on existing networks to
carry our TCP/IP traffic instead. The most widespread packet radio
network which already exists is NET/ROM, so that is why NOS
supports it.

Thus when you monitor TCP/IP traffic, you may see AX.25 frames
which contain NET/ROM packets which contain IP packets which
contain TCP packets — see Fig 4-2. Sounds complicated, but once
you’ve read this book you’ll see that it’s really quite straightforward to
set up, provided you keep a clear head and understand the functions of
the different network layers.

Fig 4-2: A Muiti-protocol NOS Packet.

And there’s even more. NOS also supports PBBS forwarding and
reverse forwarding, allowing us to communicate with the established
PBBS mail network. NOS stores the PBBS mail files in the same
directories as TCP/IP mail files, and you can read and send mail in
either format.

Thus we have the best of both worlds. We can choose to send our mail
either via the AMPR network or via the AX.25 PBBS network, and we
can read mail from both of those networks as well.

NOS in a Nutshell @

T

| NOS BBS
| MAILER

1 send/receive
1 list/kill etc

| INTERFACE

| SUPPORT

L . i serial ports

i amp O L i device cards
ax25 route | | 5

| domain

{ IP/RIP/RSPF § : £ i Ethemet
. ; i modems
ee—

Fig 4-3: NOS — The Big Picture

© NOS in a Nutshell 23

The Basic Requirements
To run NOS in a DOS environment, you need the following:

e aPC

¢ atnc capable of KISS operation (most are today)

e acopy of the NOS software

¢ NOS documentation (e.g. the NOSview documentation package)
e an Internet (IP) Address.

The PC can be almost any model in the 80x86 family, with at least
IMB of memory. Obviously the machine should be the fastest you can
afford, at least 8 MHz. With a full set of run-time software and on-line
documentation, you will need about 2.5MB of hard disk space
(although you can run a bare-bones system on a laptop with just dual
720K diskette drives at a pinch).

NOS software and full reference documentation are available in the
NOSview package, already described in the Chapter 2.

Internet addressing is explained below.

The Internet Protocols

Figure 4-3 opposite shows the main building blocks of NOS. The two
networking protocols at the heart of NOS are the Transmission Control
Protocol (TCP) and the Internet Protocol (IP), at the bottom of the
diagram. These protocols were developed under the aegis of the
Defense Advanced Research Projects Agency (DARPA) in the United
States, and have been in general use in data networks throughout the
world for many years.

However, the raw TCP and IP protocols are not of very much interest
by themselves, at least not while you’re still learning how to set up
NOS. Much more important are the network services that use TCP/IP,
which you will use to transfer files, send mail and so on.

24

NOS in a Nutshell ©

The five main classes of network services which you will use are (again
see Fig 4-3):

e Chat

e Remote Login

o File Transfer

e Mailers

¢ Network Connectivity

Chat

The chat service lets you do just that, using the NOS command ttylink
(or chat in some versions of NOS). Thus if you want to chat to
NS9KEN, you give the command ttylink ns9ken, and once you are
connected you can converse in exactly the same way as in vanilla
AX.25. NOS saves keystrokes in a buffer as you type, and then
transmits the buffer when you hit CR.

Remote Login

There are two different remote login services provided in NOS. The
one you are most likely to use is TELNET. When you give a command
such as telnet ns9ken, you will normally be connected to his NOS
BBS, where you can read and send mail, and use various network
gateways if you have permission.

The alternative login service is rlogin. This command lets you perform
a login to a remote computer which supports the RLOGIN protocol.

File Transfer

The NOS command for file transfer is ftp. To transfer files between
your systtm and NSO9KEN’s system, you give the command
ftp ns9ken, and when you are connected you can give the get command
to fetch a file from NS9KEN (e.g. get yourfile.txt), or use put to send
a file to NS9KEN (e.g. put myfile.txt).

You can transfer ASCII or binary files, simply by giving the ascii or
binary command before starting the transfer. You don’t need to worry
about lost packets or duplicate packets; FTP takes care of error

© NOS in a Nutshell 25

detection and correction, so when the transfer is done you can be
confident that it was successful.

Mailers

The basic function of a mailer program is to let you compose messages
and bulletins ready for forwarding, and to read incoming mail. There
are no less than four mailers which you are likely to come across in
NOS systems:

BM

ELM

PCEIm

NOS BBS

The first three of these mailers are not actually part of NOS, but are
separate programs which you can call from NOS when you want to
access your mailbox. Alternatively you can use them completely
independently of NOS, starting them from the DOS command line.

The fourth mailer, the NOS BBS, is built in to NOS, and has several
extra features in addition to handling mail.

Why so many mailers? It’s really a matter of history. In early versions
of NOS there was no built-in mailer, and BM (“Bdale’s Messy Mailer”
from N3EUA) was provided instead. This had very basic functionality
and was cumbersome to use, but it served its purpose at the time.

Next in line came ELM, which provides a much nicer full-screen menu
environment. With ELM you can compose mail using your favourite
text editor, include files in your messages, set up mailing lists and so
on. Many people use this mailer today.

PCElm is a more recent mailer which looks and works very much like
ELM, but is in fact unrelated. As well as providing all the facilities of
ELM, PCEIlm also has a built-in text editor and lets you set up screen
colours, define message file name extensions and delimiters, filter out
unwanted message headers and so on.

The built-in NOS BBS contains a simple mailer which works in a very
similar way to the familiar AX.25 PBBS. You give commands like L
to list mail, SP or SB to send it, R to read it and so forth. However,
the NOS BBS also provides a set of gateway commands which let

26 NOS in a Nutshell @

users break out into the NET/ROM network or telnet into another NOS
BBS, or even take over control of your station as a remote sysop — but
you’ll be glad to hear they can’t do any of these things unless you give
them permission!

Use of the NOS BBS is not restricted to TCP/IP users. An ordinary
AX.25 user can connect to your NOS BBS, read and send mail just like
a TCP/IP user, and can use the gateway commands as well if they have
permission. In other words, this gives an ordinary AX.25 user the
capability of accessing the NET/ROM network and AMPRnet if they
want.

So which of these four mailers do you use? If you are logging into
someone else’s system, you have no choice: the built-in NOS BBS on
that system is the only mailer you can access. On your own system
you can use the NOS BBS if you want, but you’ll probably prefer to
use PCEIm (or perhaps ELM) as it has 2 much nicer user interface.

Mail Forwarding

The main function of the mailers just described is to let you read and
compose mail. To send and receive this mail, NOS provides three mail
forwarding services:

¢ Simple Mail Transfer Protocol (SMTP)
e Post Office Protocol (POP)
e AX.25 PBBS Forwarding

SMTP handles the sending and receiving of mail via AMPRnet, and is
the default method of handling mail. Using SMTP you can transfer
mail between any computers which understand it; i.e. virtually any
kind of machine in the world.

POP is the reverse forwarding protocol that works with SMTP. With
POP you can nominate another machine as your Post Office, and
when you run POP, your own machine will automatically login to
the Post Office and collect any mail waiting for you.

AX.25 PBBS forwarding and reverse forwarding is fully compatible
with the PBBS network, so if you don’t have access to a local NOS
system which can forward your mail using SMTP, you can still
communicate with the outside world via the PBBS network.

© NOS in a Nutshell 27

Network Connectivity Services

NOS provides a number of network support services which let you
check the availability of other stations on the network. These services
include ping and hop.

The ping command is known officially in the trade as the “Packet
Internet Groper™ (... amazing but true!), and is useful when you’re not
sure if a local station is responding to your traffic. Whenever you want
to check if a local station is active, you “ping” it; e.g. ping ns9ken. If
NS9KEN is running NOS, it will respond to your ping, and you will
see on the screen a number representing the round-trip time for your
ping packets. If you get no response, or if the round-trip time is
unexpectedly long, you know that something is wrong.

The hop commands let you check the availability of routes to a
particular station. For example, to find out which gateways your
packets pass through to reach NSOLIZ, you would give the command
hop check ns9liz. This is very useful to verify that a route exists to the
target station — and can sometimes show up some bizarre routings that
you never knew existed!

Station IP Addresses

Every NOS station has an IP address, a unique 32-bit number which is
usually expressed as four decimal numbers separated by dots (the so-
called “dotted-decimal” notation). For example, NS9BOB’s IP address
in this book is 44.199.41.1.

The first byte is always 44, which represents the AMPRnet.

The second byte (199) usually represents a country (or a state in the
United States).

The third and fourth bytes are an address within that country.
Typically the third byte will represent a region or area, and the last byte
will be a station number in that region.

Incidentally, you may see some documentation which shows IP

addresses enclosed in square brackets; e.g. [44.199.41.1]. This
convention is a relic of early NOS systems, and is not used today.

Each country or state where there is AMPRuet activity has a local IP
address coordinator who allocates addresses on request. A list of

28 NOS in a Nutshell ©

coordinators is shown in Appendix 5. You should contact your local
coordinator listed in the appendix to get an address. If your country
does not yet have a coordinator, you should contact the international
coordinator in the United States instead (but be prepared — he will
probably nominate you as the country coordinator!).

From time to time the coordinators issue a full list of IP addresses in
their area, as a set of bulletins on the PBBS network. When you set up
your NOS station, you will use this list to create the file domain.ixt,
which NOS uses whenever you make a network connection. (Strictly
speaking, you don’t really need to have a domain.txt file — you could
use IP addresses instead of symbolic hostnames; e.g. you could give the
command ping 44.199.41.2 instead of ping ns9ken, but obviously it is
more meaningful to use names rather than addresses).

Keeping domain.txt up to date is clearly a problem. One way round
this is to nominate a local station as a Domain Name System (DNS)
Server, which keeps a master copy of the file and makes it available to
other users. (This is somewhat similar to a PBBS White Pages server,
which keeps a record of AX.25 stations and their local mailboxes). If
you then set up NOS to use the DNS server and attempt to make a
network connection, NOS will first look in your own domain. txt file for
the hostname you have given. If it can’t find the hostname there it then
automatically make a request to the DNS server machine for the IP
address of the station you are trying to contact.

Address Resolution Protocol

When setting up a network connection, NOS needs to know not only
the IP address but also the link address of the station you wish to talk
to. If you are using a radio link, the link address is the other station’s
callsign (e.g. NS9KEN-5). If you are on Ethemnet, the link address is
the 48-bit hardware address of the Ethernet adapter card in the other
station’s PC (e.g. 00:00:C0:AC:01:26).

To set up the table of link addresses, NOS provides the arp (Address
Resolution Protocol) set of commands. Thus, for example, to
communicate with NS9KEN, you could give a command such as
arp add ns9ken ax25 NSOKEN-5, thus forming an association
between the IP hostname (ns9ken) and the link address (NS9KEN-5).

© NOS in a Nutshell 29

Routing

Routing controls how packets get to their destination. NOS supports
no less than three completely independent levels of packet routing:

e AX.25 routing
e NET/ROM routing
¢ [P routing

You’ll already be familiar with AX. 25 routing, particularly when it’s
referred to by its more usual name: digipeating. NOS has a set of
ax25 route commands which let you set up digipeater paths to
nominated destinations.

For example, to route packets via digipeater AX9DGC to reach
NS9PAM-5, the NOS command to set up the AX.25 routing table
entry will be ax25 route add NS9PAM-5 AX9DGC.

Similarly, there is a set of netrom route commands, with which you
can set up NET/ROM routes and aliases which ordinary NET/ROM
nodes understand.

IP routing is basically an extension of the NET/ROM routing idea,
specifically for forwarding IP packets onwards to their final
destination. NOS has a set of route commands for setting up and
maintaining the IP routing table.

Each of these three levels of routing is quite independent of the other
two.

Routing Table Updates

In the amateur packet network, nothing lasts for ever — or even for a
lot less time than ever! Routes between nodes are continually changing
as stations come and go, as frequencies change and so on. This means
that for there to be any realistic chance of communicating with other
users on the network, your station has to be kept up-to-date with the
current routing situation.

NOS achieves this in two ways. Firstly, it listens to user traffic on the
frequency, and when it hears stations it dynamically updates the
appropriate routing tables. These updates remain in memory for a
finite period (usually measured in minutes or tens of minutes), and if a

30 NOS in a Nutshell &

station is not heard again the routing information for that station
eventually disappears.

The second way that NOS keeps up-to-date is by routing broadcasts.
NOS regularly sends broadcasts of the NET/ROM routing table in just
the same way as a native NET/ROM node, and also sends IP routing
table broadcasts at regular intervals.

For IP routing broadcasts, NOS supports two protocols: RIP (Routing
Internet Protocol) and RSPF (Radio Shortest Path First) protocol. RIP
is the protocol to use if your station is part of a well-established and
stable network such as Fthernet, whereas RSPF works better in a
dynamic radio environment.

Wormhole Routing

Another method of packet routing supported by NOS is the wormhole,
which provides AX.25 connectivity over a TCP/IP link. This is useful
where you are linking two AX.25 stations via an Ethernet or telephone
connection. In effect, the NOS wormhole acts just like a (rather
complicated) digipeater — see Fig 4-1 opposite.

Interface Support

NOS is noted for its very wide range of supported interfaces (although
not every version of NOS will support all of them). These include:
e The serial ports (COM1 - COM4), for tncs or modems

e Modem control

o Ethemet adapters

e Clarkson drivers

e Baycom AX.25 driver

e DRSIPCPA 8530 card

o HAPN 8273 adapter

¢ High speed DRSI/HAPN driver

o [Eagle 8530 card

e NET/ROM control

o Single- and multi-port KISS TNCs

e PACcom PC100

@ NOS in a Nutshell 31

ni 04]

Fig 4-4: The AXIP wormhole lets AX.25 users communicate over
AMPRnet.

In other words, NOS will talk to virtually any tnc or modem, or any of
the well-known network adapters. The Clarkson drivers are freely
available as public domain software, and support all of the generally
available Ethernet and Token Ring LAN adapters.

NOS talks a number of low-level protocols via these interfaces:

e KISS for tnc control
s SLIP and PPP for serial point-to-point telephone links
e NRS for NET/ROM control

e Ethernet and ARCnet for Ethernet adapters

The NOS Session Manager

Because NOS is a multi-tasking system, you can run many sessions in
parallel. Hence it’s possible, for example, to telnet to NS9KEN, do file
transfers with NSOLIZ, access your own mailbox, ping NS9BOB and
have a chat with AX.25 station AX9AAA, all at the same time. In

32

NOS in a Nutshell &

principle you can run many more sessions as well, but you’ll really
need a Jekyll and Hyde personality to handle it all!

The NOS Session Manager maintains a virtual screen and keyboard for
each session, and you can hot-key from session to session at will. You
can find out the status of any session on demand, and you can trace all
the traffic flowing through your station, right down to the hexadecimal
byte level if you want to. You can also record any session on disk for
later use. Furthermore, you can allow other stations to drive your
Session Manager remotely if, for example, your station is on a remote
hilltop site.

That’s NOS

By now it will be clear that NOS is a very complex package, with
many advanced features which make it usable in a wide variety of
environments. To the beginner, some of the features in NOS may
appear to be daunting, but fortunately it isn’t necessary to understand
everything before you can use it.

Just like when using a tnc for the first time, you can get away with
using default setup parameters; performance may not be optimum, but
it will at least work. Then as you gain experience you can dig deeper
into the software and start to experiment with different configurations.

Driving NOS is a bit like driving a car. Think of the network protocols
(TCP, 1P, SMTP and so on) as the engine, and think of the network
services (like TELNET and FTP) as the brakes and steering. To drive
NOS (the car), you have to know about TELNET and FTP (the brakes
and steering), but learning about TCP and IP (the engine) can wait until
later.

With NOS, all you really need to know at first is how to set up the tnc,
how to configure the address and routing tables, and how to use the
basic network services to transfer files and handle mail. Fine tuning of
the network protocol parameters can wait until much later.

5: LET'S MEET THE LOCALS

For the purposes of illustration throughout this book, there are many
examples of NOS commands which include callsigns, IP addresses and
so on. To achieve continuity and consistency from chapter to chapter,
it’s useful to present a network showing who’s who. So let’s meet the
inhabitants of the hypothetical country of Nosland — see Fig 5-1.

The Nosland network consists of a mixture of ordinary AX.25 stations
(the small boxes in Fig 5-1), NET/ROM nodes (middle-size boxes) and
NOS TCP/IP stations (the shaded boxes). Stations have callsigns in
the following series:

AX .25 stations AXOxxx

AX.25 PBBS stations BB7xxx

NET/ROM nodes NROxxx

NOS stations NSOxxx
The IP network

The IP network (AMPRnet) is spread over three geographical regions,
arbitrarily called Regions 41, 45, and 47. The IP addresses of stations
in these regions are of the form 44.199.rr.xx, which breaks down as
follows:

e 44 isthe AMPRnet network code.

e 199is the country code for Nosland.

e 1T isthe Region code (i.e. 41, 45 or 47).

e xx is the station address within the region.

Let's Meet the Locals ©

mail
exchanger

smip
g_qfem:y server

44.199.41.1
NS9BOB-5

44.199.47. 75
ﬂSQTOM—S

domain name

NETWORK

AX 25 PBBS

44.199.47.76
NS9BEN-5

ni 054

Fig 5-1: The NOSLAND Network.

© Let's Meet the Locals 35

Star of the show (on whom most examples in this book are based) is
Bob, shown near the top of Fig 5-1. His AX.25 callsign (in upper-case
letters) is NS9BOB-5, and he has the IP hostname (in lower-case
letters) ns9bob.ampr.org, shortened to ns9bob. His IP address is
44.199.41.1.

Bob’s immediate IP neighbours in Region 41 are NSOPAM (via
digipeater AX9DGC) and NSO9KEN. Through Pam he can talk to Sue
in Region 45, and through Ken he can talk to Liz and Jim, also in
Region 45.

Bob also talks to NSOMXA, which acts as a mail exchanger gateway.
Bob uses this gateway to forward mail addressed to certain specific
stations. He also forwards mail to other stations via the general SMTP
gateway NSOSGW.

Further, he uses the Domain Name System server NS9DNS, to get IP
addresses for stations which are not included in his own [P name-and-
address file.

The NET/ROM Network

The ordinary NET/ROM network on the left of Fig 5-1 links Regions
41 and 47, and consists of three nodes, NROAAA, NR9BBB and
NR9ZZZ. These nodes have NET/ROM aliases NRA, NRB and NRZ

respectively.

In addition, Bob and Tom run NET/ROM nodes within their NOS
stations, using the alias:callsign pairs #BOB:NS9BOB-6 and
#TOM:NS9TOM-6 respectively.

The AX.25 Network

There are several stations which run ordinary AX.25. These include
digipeaters AX9DGA, AX9DGB and AX9DGC, plus end stations
AXI9TIM and AX9SAM (AX9DGA and AX9DGB are not shown on
this diagram).

Station BB7BBS is a regular AX.25 mailbox, capable of receiving and
forwarding mail over the PBBS network. Bob acts as a mail gateway,
forwarding mail to and from BB7BBS.

36 Let's Meet the Locals &

Connectivity

The stations which can talk direct to each other are joined by lines in
Fig 5-1. Certain stations function as bridges, routers and gateways, to
provide connectivity for other stations which are out of direct range of
each other. The Nosland network has been carefully designed to show
how to configure each of these stations, to handle just about every
forwarding scenario you’ll encounter in practice.

37

6: THE TNC REVISITED

Most amateur packet radio systems use a terminal node controller
(tnc) to interface the computer to the radio (Fig 6-1). The tnc is
basically a Packet Assembler/Disassembler (PAD), with a built-in
modem to convert outgoing digital bit streams into audio tones suitable
for modulating the radio transmitter, and to convert incoming audio
from the radio receiver into digital data for the PC,

ni 06

Fig 6-1: The Terminal Node Controller contains a packet
assembler/disassembler (PAD) and modem.

[As an alternative, some people are now using the Baycom modem for
packet radio. In this case, the PAD functionality is implemented in a
special software driver which you load into memory before starting
NOS].

This chapter examines briefly what is inside a tnc, and the various
modes it can operate in.

38

The TNC Revisited ©®

TNC Modes

The tnc can operate in three different modes:

e Native mode
o Host mode
e KISS mode

Native Mode

Native mode is the mode for which the tnc was originally designed. As
its name implies, the tnc controls a terminal node on the packet
network, and when operating in native mode you don’t even need a
computer; a dumb terminal is enough.

When the tnc starts up it displays the familiar cmd: prompt on the
terminal; and you can then give around 80 commands to start and stop
connections, monitor network traffic, send and receive mail, and so on.

All of these operations are controlled by firmware within the tnc (Fig
6-2). The firmware has five main components:

e Command interpreter

e TNC control
e Packet Assembly/Disassembly
e Radio Control

e Personal Messaging System

Command Interpreter: The command interpreter directs user
commands to the other firmware components.

TNC Control: This component understands dozens of commands to
set up the tnc; e.g. uart control, terminal link flow control, clock
initialisation, callsign setup, etc, etc.

Packet Assembly/Disassembly: This is the major component of the
tnc firmware, handling the connection and disconnection of AX.25
virtual circuits, AX.25 timers, digipeater routing, beacons, network
monitoring, packet sequencing/flow control and HDLC frame
assembly/disassembly.

The TNC Revisited 39

ni 07

Fig 6-2: The tnc in native mode. All packet handling takes
place inside the tnc.

Radio Control: This component supports the radio-dependent aspects
of the tnc, such as TXDELAY and other timers, persistence count
and so on.

Personal Messaging System: The PMS is a simple messaging system
that stores personal messages which people have sent to you.

These tnc functions are only briefly listed here, simply to allow us to
compare native mode operation with host mode and KISS mode. If you
want to find out more about native mode, the book Your Gateway fto

40 The TNC Revisited @

Packet Radio by Stan Horzepa is highly recommended (details in
Appendix 6).

Shortcomings of Native Mode

When the first tncs were designed in the early 1980s, the goal was to
give users the opportunity to get into packet radio with the minimum of
equipment. Together with just a dumb terminal and a radio, you had
everything you needed to make AX.25 network connections, chat
interactively with your neighbours, and send and receive short personal
messages.

But that was all. If you wanted to do more adventurous things like file
transfers, or set up a store-and-forward bulletin board, or set up a
network switch, you had to replace the dumb terminal with a PC.

To do these things properly, the PC has to be in control of the packet
station, not the tnc. But with the firmware which existed in the early
tncs, it was the ne that was in charge of proceedings. The tnc decided
when to send a message to the PC, and what format the message was
in. Incoming status messages got mixed up with user data, and the file
transfer was a hit-and-miss affair.

The basic difficulty was that the tnc’s user interface had been designed
for people, not computers. Human users were not greatly troubled if
status messages arrived at random times in different formats, and were
mixed up with data, but programming a PC to cope with all these
possibilities was a nightmare.

To overcome these shortcomings, host mode was introduced.

Host Mode

In host mode (Fig 6-3), the tnc is like a well-behaved child — it only
speaks when spoken to! The PC is now in charge of proceedings, and
commands and responses across the serial link are in simple, consistent
formats which are easy to program. The PC only asks the tnc for
information when it is ready to receive it.

This makes it much easier to display session status, switch between
multiple data streams, and so on. Programming network services such
as file transfer and bulletin boards is now straightforward, and more

©® The TNC Revisited 41

flexible — it’s much easier to change software in the PC than to
change firmware in the tnc.

Fig 6-3: When the tnc operates in host mode, the PC is in
control. The PC handles the higher level functions such as the
Personal Messaging System, multiple streams and split-screen

operation. The tnc still handles low-level packet assembly/
disassembly, however, and is still restricted to AX.25.

However, in host mode, most of the low-level packet handling still
takes place within the tnc. This is fine for AX .25 virtual circuits, but
not suitable for other protocols such as TCP/IP. What’s really needed

42 The TNC Revisited @

is the capability of the PC to control the content of frames at the lowest
level. This is what you get when the tnc operates in KISS mode.

KISS (Keep it Simple, Stupid!) Mode

When the tnc operates in KISS mode, almost all of the station’s
functionality takes place within the PC (Fig 6-4). The PC provides the
high-level network services for file transfer, bulletin boards and so on,
together with lower level protocol software which has access to every
HDLC frame that enters and leaves the tnc.

Network Services |
(ffp. teinet etc)

TCP UDP
P
NET/ROM
AX.25

| Packet
Assembly/
| Disassembly

ni 09

Fig 6-4: In KISS mode, the tnc handles all frame types. NOS in

the PC contains a complete set of AX.25 software (replacing the

tnc AX.25 firmware), together with support for all the AMPRnet
protocols and NET/ROM.

@ The TNC Revisited 43

This means that it’s now possible to control exactly what goes into
each individual HDLC frame, making it straightforward to multiplex
several different protocols over the same radio link. The downside, of
course, is that these protocols have to be implemented within the
PC — this makes it necessary for NOS to contain a complete set of
AX.25 software which completely replaces the AX.25 firmware in the
tnc.

The KISS Protocol

To communicate between the PC and the tnc, the KISS protocol is
used. This is a very simple asynchronous packet protocol, whose main
purpose is to provide an envelope for HDLC frames (Fig 6-3). Each
frame starts and finishes with a Frame End (FEND) character. There
is no checksum or CRC.

ni 10

Fig 6-5: KISS Frame format. When a frame reaches the tnc, the
FEND and KISS type bytes are removed, leaving the original
packet for transmission.

The TNC Revisited @

Immediately following the leading FEND character is a KISS fpe
byte. The low-order 4 bits of this byte contain a control code.

If the code is 0, this is a data frame, and the high-order 4 bits specify
the tnc port number (0-15) for which the frame is applicable.

If the control code is non-zero, the frame contains a tnc setup
command.

The KISS link is set to 8-bit data, one stop bit and no parity. If a
frame happens to contain a data byte which looks like a Frame End
character, the byte is replaced with a 2-byte Frame Escape/Transposed
Frame End (FESC/TFEND) sequence. If a frame contains a FESC,
this is replaced with a 2-byte Frame Escape/Transposed Frame Escape
(FESC/TFESC) pair.

o

Voo asWwWweH

Data Frame

TX Delay (x 10ms)

Persistence (0-255)

Slottime delay (x 10msS)

TX Tail (x 10mS)

O=half duplex, l=full duplex
Hardware dependent

TX mute

0=DTR low, 1=DTR high

0=RT8 low, 1=RTS high
Baudrate

End delay

Group

Idle

Min

Max key

Wait

Parity: O=none, l=even, 2=odd
Down

Up

Prepare to switch tnc from KISS to native mode
Switch tne from KISS to native mode

Table 6-1: KISS Control Codes (expressed in decimal). Most of
these codes are tnc-specific. Only codes 0-3, 5 and 255 are

understood by all tncs.

® The TNC Revisited 45

When a KISS frame arrives at the tnc, the FEND characters and KISS
type byte are stripped off, and any escaped characters are replaced with
their original values. Then, if the frame is a data frame, it is passed to
the HDLC controller chip for transmission.

If the frame is a tnc control frame, the tnc executes the command
specified in the KISS type byte. Some of the commands require
additional parameters, which are included in the rest of the frame. The
actual command codes and their functions are tnc-dependent.

A more-or-less complete list of known codes is shown in Table 6-1
opposite. All tncs understand codes 0-3, 5 and 255, whereas the
remaining codes are mostly for experimental use.

For a more detailed description of KISS mode, see the paper by Mike
Chepponis and Phil Kam (details in Appendix 6).

Switching the TNC to KISS mode

When you power up a tnc, it will normally start in native mode. To
make the tnc ready for NOS, you first need to initialise it with your
AX 25 callsign, and you also need to set up the CW ID interval for
Morse code station identification, if local licence regulations require it.

For example:

cmd: MYCALL NS9BOB-6
cmd: MID 84

Then, to switch to KISS mode, the command:

|| cmd: KISS ON Il

is probably all that’s necessary — see Fig 6-6 on the next page.

Once the tnc is in KISS mode, it won’t understand any more native
mode commands. From now on, all communication with the tnc uses
the KISS protocol.

46

The TNC Revisited @

cmd: MYCALL NS9BOB-5
cmd: MID 84
cmd: KISS ON

net> (NOS commands)

net> param tnc0 255

ni 12

Fig 6-6: Switching the tnc between native mode and KISS mode.

However, some older tncs may require a sequence of commands to
switch from native to KISS mode; e.g.

cmd:
cmd:
cmd :
cmd :
cmd :
cmd :
cmd :
cmd :
cmd ¢
cmd :
cmd:
cmd :
cmd:
cmd :
omd :

AWLEN 8

CONMODE TRANS

HID OFF
HPOLL OFF
KiSS ON
PARITY 0
PPERSIST ON
RAWHDLC ON
START §00
STOP $00
TRACE OFF
XON $00
XOFF $00
XFLOW OFF
HOST ON

@ The TNC Revisited 47

Switching Back to Native Mode

If you want to switch your tnc out of KISS mode back to native mode,
you need to send a KISS command frame with command code 255.
This is achieved in NOS with the param command:

I net> param tnc0 256 H

where tnc0 is the name of the interface to the tnc. Some tncs may also
require the param tnc0 254 command as well:

net> param tncld 254
net> param tncld 266

]

7: A PEEK AT PROTOCOLS

In this chapter we take a fresh look at some of the protocols which you
are probably already using, such as AX.25 and NET/ROM, and then
explain how TCP/IP and the AMPRnet ride on top of them.

Protocol Stacks

Present-day networking design usually follows the OSI model, the so-
called 7-layer protocol stack (the left half of Fig 7-1). This isn’t the
place to go into detail on the functions of each layer in the stack;
suffice to say here that it’s convenient to break down the stack into two
parts. The lower part contains the Physical, Data Link and Network
layers, and the upper part contains the remaining four layers.

The essential difference between the two sets of layers is that the lower
layers are basically network-dependent, whereas the upper layers are
virtually independent of the underlying network.

However, the TCP/IP world which NOS supports was well established
long before the OSI model became accepted. The TCP/IP stack is
shown in the right half of Fig 7-1, and from this we can see the
approximate correspondence between the two models.

The reason for showing both of these stacks here is that some of the
protocols which NOS supports (such as KISS, AX.25 and NET/ROM)
best fit the OSI model, whereas the Intemet protocols best fit the
TCP/IP model. Predictably, this mixture of old and new protocols has
caused many headaches for the software developers who squeezed them
all into one package. To the purist the result is a mess, but to the
pragmatist it works, and that’s what counts!

So let’s merge the protocols which NOS supports into one diagram
(Fig 7-2). It looks preity complicated now, but if we take it piece by
piece it won’t be too painful. Let’s start at the bottom.

50 A Peek at Protocols @

The O8I TCP/IP Protocol
Reference Model Architecture
BBS
NET/ROM
AX.25
Kiss
ni 14 |

Fig 7-1: The OSl and TCP/IP Protocol Stacks

The Physical Layer

The physical layer is concerned with the physical connections to the
network, NOS provides support for three main types of connection:

¢ modems

¢ packet radio terminal node controllers

e local area network adapters

The connection between the PC and a modem can be a simple 3-wire
cable (TD, RD and ground), but is much more likely to include all the
modem control lines, such as RTS, CTS and so on.

@ A Peek at Protocols 51

Fig 7-2: NOS Protocols
L]

52 A Peek at Protocols @

The connection between the PC and a tnc can also be a 3-wire cable, as
the KISS protocol which NOS uses when running TCP/IP does not
support flow control. However, some versions of NOS do support
hardware flow control, so it would make sense to have a cable with all
the modem control lines present anyway.

The LAN adapter can be any of a wide range of commonly available
Ethemnet or token ring adapters. We will see shortly that NOS allows
you to install one or more of the public domain Clarkson drivers which
support these adapters.

NOS Drivers and Interfaces

For each of the I/O controllers and the uarts in your system you will
need to define a DOS 1/O address and an IRQ vector number. For
example, for the COMI1 port, the uart uses I/0O address 0x3f8 and
IRQ4. These numbers appear as parameters in NOS attach
commands which run when you start NOS. For example:

ﬂ attach asy Ox3f8 4 ax25 tncO 2048 256 4800 !I

We’ll look in detail later at what all the parameters mean, but two of
them are relevant here. The parameter asy is the name of the NOS
asynchronous driver, and the parameter tnc0 is the NOS interface name
for the driver. NOS driver names like asy are fixed, but you can
choose any meaningful names for the interfaces. (In this book we use
the name tncO for the tnc interface, but other documentation which you
may have seen uses the names ax0 or pkO instead).

Interface names are used in many commands. For example, if you
want to trace packets passing through the tnc, you can give the
command trace tnc0 211, or if you want to chat with AX9SAM using
AX.25 you can give the command connect tncd AXISAM. Similarly,
if you use the interface name tel0 for the modem port, you can run a
dialer script with a command like dialer tel0 /scripts/dialbob.scr.

Data Link Layer

The Data Link layer is concerned with protocols which encapsulate
packets into frames in readiness for transmitting them (and also, of

@ A Peck at Protocols 53

course, for decapsulating received packets). When sending and
receiving data over a telephone line, the most common protocol is
SLIP, but the PPP point-to-point protocol is nowadays gaining in
popularity.

For the packet radio network, you will almost certainly be using the
AX 25 protocol at this level, with the AX .25 packets being enveloped
in KISS frames for the tnc. The AX.25 driver is fully compatible with
the AX.25 Level 2 Version 2 specification, so you can use it not only
for NOS but also for ordinary AX.25 connections if you want to.

An added feature of NOS is the ability to talk directly to a serial port,
without encapsulating the data in any way. This is useful if you want
to send commands to the tnc in native cmd: mode, or to set up or
interrogate a modem.

NOS provides three commands to do this:

e tip allows interactive access to a serial port via the keyboard and
screen;

e comm lets you send previously prepared strings from a file to a
serial port;

e dialer lets you control a serial port with scripts containing modem
control commands, time delays and tests for expected responses.

For LAN adapters you can use external drivers compatible with the
FTP Inc packet interface. As the drivers are not part of NOS, you load
them into memory before starting NOS. You can get suitable drivers
from the FT/TCP package available from FTP Inc, or more probably
you will use one of the public domain Clarkson drivers. Appendix 1
gives the details.

The “Workhorse” Protocols

Working our way up Fig 7-2, we now come to the “workhorse”
protocols which do the hard work of transferring information between
systems. These include TCP, IP, UDP, ICMP, NET/ROM and others.
As already mentioned in Chapter 4, think of these protocols as the
“engine” of the NOS system. We are not particularly interested at the
moment in exactly what they do or how they work; all we need to know
now is where they fit into the overall picture.

54 A Peek at Protocols @

The Network Services

The services shown at the top of Fig 7-2 (tip, ftp, telnet etc) form the
interface between NOS and the user. You can give commands like
ftp ns9bob from the keyboard and see responses on the screen, or you
can include the commands in script files if you want to run them
repeatedly (in a similar way to * BAT files in DOS). You can also give
many of the commands from your built-in NOS BBS.

The Session Manager

The Session Manager is the part of NOS which pulls everything
together. You give commands to the Session Manager, which then
either executes them immediately, or starts new sessions to handle
them. With the Session Manager you can monitor what is happening
within NOS at any time, start and stop network services, abort data
transfers, run command scripts, trace network packets, change
interface configurations and so on.

0 AX25 — 01 ICMP ping
cd ARP — 06 TCP telnet, fip. efc
cf NET/ROM — 11 UDP rip, hopcheck

Fig 7-3: The Protocol ID (PID) code in the AX.25 frame specifies
the type of packet. When the PID = cc (hex), it is an IP packet,
and the IP Protocol code then specifies the higher level
protocol. (All codes shown here in hexadecimal).

55

8: NAMES, DOMAINS AND ADDRESSES

Before you can communicate using TCP/IP, you need an Internet
hostname and address. Your hostname will usually be your callsign,
followed by the domain name for packet radio: .ampr.org (e.g.
ns9bob.ampr.org). A domain is a logical area in the Internet network;
ampr means “‘amateur packet radio” and org means “organisation.”

To get an Internet address, you need to contact your local address
coordinator (see Appendix 5 for a list of coordinators). The IP address
will be 32 bits long, and, like your radio callsign, it will be
unique — nobody else in the world will have the same address. The
address is almost always written in dotted-decimal notation; e.g.
44.199.41.1.

The domain.txt File

Having received your IP address, you now edit it into the NOS name-
and-address file, domain.txt. Appendix 3 contains an example of a
typical domain.txt file (see pages 318-319). Fig 8-1 on the next page
shows a short extract.

Each entry (known as a “resource record”) needs one line, and the
fields are separated by any combination of tabs or spaces. You can
include comments, prefixing them with the # character.

Special Addresses

The first few resource records in domain.txt specify some special
addresses for network broadcasts and packet routing. Later chapters
describe how to use these.

The loopback address is a dummy IP address: 127.0.0.1. When you
send anything to this address, you are really sending it to yourself! For

56 Names, Domains and Addresses @

example, you can transfer a file to yourself with the command
ftp loopback, or log into your own NOS BBS with telnet loopback.
You won’t use loopback very often once you are familiar with NOS,
but it’s extremely useful for testing off-air — this way you can learn a
lot about NOS and make as many mistakes as you like, without
treading on your neighbours’ toes. Incidentally, some documentation
uses the word localhost instead of loopback; this means exactly the
same thing.

#

SPECIAL ADDRESSES

#

ampy . ampr.org. IN A 44.0.0.0

nosland. ampr.org. IN A 44.199.0.0

regiondl.ampr.org. IN A 44.199.41.0

region45.ampr.org. IN A 44.199.45.0

locopback.ampr.org. IN A 127.0.0.1

i

RADIO REGION 41

#

nsSbob. ampr.org. IN A 44.199.41.1

ns9ken.ampr.org. IN A 44.199.41.2

ken.ampr.org. IN CHAME ns9ken.ampr.orgq.

naSpam. ampr.org. IN A 44.199.41.3

ns9Yzzz.ampr.org. IN MX 0 nsSken.ampr.org.
IN WS nsSdns.ampr.org.

ns9dng . ampr.org. IN A 44.199.41.98%

Fig 8-1: The file domain.txt relates symbolic hostnames to
Internet addresses.

Ordinary Internet Address Records

You need an entry in domain. txt for your own station. For example:

nsSbob. ampr.org. IN A 44.199.41.1

® Names, Domains and Addresses 57

Note that the callsign/domain string ends in a dot (after the letters org).

The letters IN A signify that this is an Internet Address entry; we’ll see
later that there are several other types of entry as well.

You’ll also need an entry in domain.xt for every other station you want
to communicate with using TCP/IP. There may be only a few entries if
you just want to talk to the locals, or there may be hundreds of entries
if you want to venture further afield. Your IP address coordinator
should be able to provide you with an up-to-date file containing the
details you need.

[net> ftelnef ps9k_en]

44199.41.2

e e

ni 16

Fig 8-2: NOS uses domain.txt when transiating symbolic
hostnames to numeric IP addresses for insertion in packets.

The file domain.ixt is not just restricted to containing entries for
AMPRnet stations. You can also include entries for other domains if
you have access to other networks.

58 Names, Domains and Addresses @

For example, your NOS system may be connected to your company’s
Ethernet LAN, so you will have entries like this:

alpha.acme.com. IN A 192.93.94.95
beta.acme.com. IN A 192.93.94.96

Here the domain name is acme.com, where com is short for
“company.’,

Default Domain Suffix

By default, you have to include the full name of a station when giving a
command, e.g. to transfer a file to Pam, the full command is
ftp ns9pam.ampr.org. However, using full domain names like this
gets tedious after a (very short) while, and so to make life easier you
can define a new default, by putting this command in the NOS startup
file autoexec.nos:

domain suffix ampr.org

Thereafter, all you need to say is fitp ns9pam — NOS then
automatically adds the suffix .ampr.org to ns9pam to get the full
hostname.

However, you can still use the full name if you wish, so if you want to
send a file to host alpha on the LAN, you can say ftp alpha.acme.com.
In this case, because you have given the full name, NOS ignores the
default domain suffix.

Canonical Name (Nickname) Records

For stations that you talk to regularly, it may be convenient to add a
nickname entry to domain.txt. This is termed a CNAME (Canonical
NAME) resource record, which refers back to an existing IN A record:

ken.ampr.org. IN CHAME ns9ken.ampr.org.

Then you can talk to NSO9KEN with a command like ftp ken.

Mail Exchanger Records

Another type of entry in domain.txt is the MX (Mail EXchanger) record.
For example:

ns9%zzz.ampr.org. IN MX 0 ns9ken.ampr.org.

This states that mail addressed to ns9zzz is to be sent to ns9ken, who
will act as a “Mail Exchanger” and forward it on to ns9zzz. The digit
0 after IN MX is called the preference value of the exchanger. You can
have several mail exchangers for a given destination, each with a
different preference value, and NOS will attempt to forward to the
exchanger with lowest value. If that fails, it will try again with the next
lowest value, and so on. This is covered in more detail in the chapter
on SMTP mail forwarding.

ns9zzz.ampr.org. IN MX 0 ns@ken.ampr.org

! org. IN A 44.199.41.2
_narpron N A 41994

44,199.41.2

O

ni17J

Fig 8-3: The Mail Exchange (MX) record specifies a mailhost
which knows how to forward mail for a particular station.

60

Names, Domains and Addresses @

Name Server Records

There are of thousands of people throughout the world with AMPRnet
IP addresses, and hundreds of thousands of people with IP addresses
for other networks. It’s obviously unrealistic to put all of these
addresses in domain.ixt (and even if you did, it would be an impossible
task to keep them up-to-date manually), and so it makes sense to put
these addresses on special machines called Domain Name System
(DNS) servers; see Fig 8-4 opposite.

Name servers are usually large, fast machines which communicate with
each other to keep master copies of resource records up-to-date, and
which allow ordinary users to interrogate them for particular records of
interest.

Some versions on NOS incorporate a DNS server. If you have a server
in your area, you can refer to it by adding an NS (Name Server) record
to your domain.txt. For example:

IN N8 ns%dns. ampr.org.

The NS record specifies the name of a Name Server machine. That
machine will need an ordinary IN A entry as well:

na9dns. ampr.org. IN A 44.199.41.99

Now, when you attempt to communicate with any station, NOS will
first look in domain.txt for the IP address of that station. If it isn’t
there, NOS will then automatically send a request to the name server in
an attempt to get the address from there.

Optimising domain.txt

If you don’t have access to a name server, your domain.xt file may be
very long. As NOS needs to read this file whenever you want to
contact a station, it makes sense to optimise its layout to minimise
access time — if the file has hundreds of records, it may take several
seconds to find a record if the machine or disk are slow.

The most obvious way of reducing access time is to put all the entries
for local stations at the front of the file, as you’re more likely to talk to
them than to other stations further afield.

Names, Domains and Addresses

61

nsQyyy.ampr.org. IN A 44.199.52.4

ni 18_1

Fig 8-4: If there is no entry for a wanted hostname in domain.txt,
NOS can make a request across the network to a Domain Name

Server to get the required IP address.

62

Names, Domains and Addresses ©

In addition, you should remove all extraneous comments and
whitespace (tabs and spaces) from the file. This will markedly improve
system response if you have a long descriptive comments for each
resource record.

Some versions of NOS also support another technique for reducing the
length of domain.txt. You can include an origin statement, specifying
the default domain name for entries in the file, and then you don’t need
to include the domain name in individual resource records,

For example:
$origin ampr.orgq.
nsSbab IN A 44.1%9.41.1
naSken IN A 44.199.41.2
ken IN CNAME nsSken
ns9pam IN A 44.199.41.3
ns9zzz IN MY 0 nsSken
IN NS ns9dns
ns9dns 1IN A 44.195.41.98
alpha.acme. com. IH A 192.93.94.95

This makes the file a lot shorter (and much easier to prepare!).

63

9: CLIENT/SERVER

Fundamental to the operation of NOS is the concept of “client/server”
organisation. This chapter covers the basics of client/server, explaining
why it is so powerful and flexible in networked environments.

POST OFFICE

ni 19

Fig 8-1: Client/Server Organisation.

64 Client / Server &

It’s convenient to use a post office analogy to show how client/server
works (Fig 9-1). Let’s say that a manager in the offices of XYZ Inc
requires some postage stamps. He asks his secretary to go to the post
office to buy them. To do this, the secretary leaves the building, goes
down the street, enters the post office, and stands in line waiting to be
served at a counter.

Eventually, the secretary reaches the front of the line and asks the
counter clerk for the stamps. The clerk hands over the stamps. Then
the secretary leaves the post office and returns to XYZ Inc, arriving
back in the manager’s office to hand over the stamps.

A simple enough transaction. Now let’s translate this into networking
jargon. The manager is a user, who issues an instruction to a client
(the secretary) to request a server (the counter clerk) to provide a
service (issue postage stamps). The client (secretary) then submits the
result of the service (the stamps) back to the user (the manager).
That’s basically all there is to “client/server”.

[As an aside, you’ll see the words listener or daemon scattered
throughout NOS documentation. These are alternatives for the word
server].

The telnet Client

In the world of TCP/IP, there are several types of client (just as in the
office there are several types of secretary), used for requesting different
services. One of the most important clients is felnet (Fig 9-2). When
you give a command such as telnet ns9ken, you are asking your telnet
client to make a connection with the telnet server at NS9KEN.

When the connection is made, the telnet server then sets up a logical
path between the client and the NOS BBS service. The BBS sends
back a login prompt to the client, which displays it on your screen.
You then log in, and you’re away. The connection remains in place
until you give the B command to the BBS, which then disconnects itself
from the client.

The numbers 1024 and 23 in Fig 9-2 are called port numbers. Packets
passing between client and server contain these port numbers, so that
each end knows which service and which user session they relate to.
The number 1024 is an arbitrary port number allocated by the client,
and 23 is the port number for the telnet service.

© Client/ Server 65

ni.?ij

Fig 9-2: When NS9BOB gives the command telnet ns9ken, his
telnet client connects to the teinet server at NSSKEN. The server
then starts the BBS, which sends a login request back to
NSSBOB.

Multiple Sessions

You are not restricted to just one telnet session. In principle, you could
start many sessions, accessing the BBSs of several stations at the same
time. Fig 9-3 shows two such session, with NSOKEN and NS9LIZ.

66

Client / Server &

o
3

Fig 9-3: Multiple TELNET sessions.

A further concept associated with client/server is the socket. A socket
is basically an end point for communication, and is expressed as a
combination of hostname:port number. For example, in Fig 9-3, socket

© Client/ Server 67

nsSbob:1024 is connected to socket ns9ken:23, and socket
ns9bob:1025 is connected to socket ns9liz:23. These socket numbers
appear in several NOS status messages, making it possible uniquely to
identify individual sessions.

Behind the telnet Server

It’s important to realise that when your telnet client connects with a
telnet server on another machine, you may not always be greeted by a
NOS BBS. See Fig 9-4. If the server is running on a UNIX machine,
the telnet server will connect your client to a UNIX login prompt
instead, which will then take you into a UNIX shell. If the telnet server
is running on a DEC VAX machine, the server will connect you to a
VMS login sequence instead.

R

ni 22

Fig 9-4: The NOS telnet client can communicate with telnef
servers on all kinds of systems.

In other words, what lies behind the TELNET server depends very
much on the machine it is running on and the network services it
supports. In NOS you have the potential to login to any machine of
any type which is running a telnet server — almost every well-known

68 Client / Server ®

machine supports telnet these days — giving you the opportunity to
connect to all manner of network services.

Different Services

Let’s take the post office analogy a little further. When the secretary
talks to the the clerk, it doesn’t always have to be a request for stamps.
It could be a request to mail a parcel, or to ask for a sheet of airmail
stickers, or whatever.

That is, the server can handle several kinds of related request from the
client. In the telnet world, the user can ask for a different service by
adding a service number to the telnet command; for example,
telnet ns9ken 21. The number 21 is called a “well-known™ port
number. The default well-known port number for the telnet server is
23 (that is, telnet ns9ken 23 means the same as telnet ns9ken).

There are around 370 assigned well-known port numbers. Here are
some of them:

7 echo
9 discard
20 ftp-data
21 ftp-control
23 telnet
25 smtp
67 bootp
69 tftp
79 finger
87 ttylink (chat)
109 pop2
110 pop3
119 nntp
513 rlogin

Having to add a port number to a telnet command is a bit of a chore,
and so to make things easier, NOS provides more meaningful client
names for the more frequently used services. For example, you can say
ftp ns9ken instead of telnet ns9ken 21, or finger ns9ken instead of
telnet ns9ken 79, and so on.

© Client/ Server 69

Note that some versions of NOS don’t have a ttylink (or chat) client,
so in this case you’ll need to include the well-known port number 87 in
telnet commands to chat to those versions; e.g. telnet nsSken 87 — see
Fig 9-5.

t> telnet nsPken 8 Hi Ken
Well hellooo Bob

ni 23

Fig 9-6: It is possible to access several different types of server
by adding a port number to the telnet command. For example,
to chat to NS9KEN, the command will be telnet nsSken 87.

70 Client/ Server ©

Talking to Yourself

A further feature of client/server architecture is that you are not
restricted to having only clients on some machines and only servers on
others. Any machine can have both clients and servers. This gives you
the opportunity to talk to yourself in exactly the same way as you
would talk to somebody else over the network — very useful for testing
and familiarising yourself with NOS.

Thus if you are running NS9BOB, you could log into your own NOS
BBS with the command telnet nsSbob (Fig 9-6). In this case, the
telnet client in your machine connects directly to the telnet server in
your machine. Now you can drive your own BBS in exactly the same
way as if you had logged into somebody else’s NOS BBS. In fact,
logging into your own BBS is such a common requirement that NOS
has a special command for this: bbs.

ni24.

Fig 9-6: NS9BOB can log into his own NOS BBS with any of
three different commands:
bbs, teinet loopback, or telnet nsSbob.

k&

10: HANDS ON — HARDWARE CHECKOUT

Now that we’ve seen something of the background to TCP/IP and
NOS, it’s time to get down to business. This chapter and the next one
explain how to set up the hardware and install the software.

To run most versions of NOS in a packet radio environment, you need
the following hardware (see Fig 10-1):

e APC

e A tnc (terminal node controller)

¢ An RS-232 cable connecting the PC to the tnc
e A radio transceiver

The PC

The PC may be any IBM-compatible 80x86 machine, running DOS or
similar. NOS needs as much memory as you can give it, and it’s
unlikely that it will run with less than 640K of RAM. A hard disk is
obviously preferable, although NOS will run (slowly) on a dual-floppy
laptop as well.

The TNC

Most tncs have an internal battery which saves certain setup
parameters in battery-backed RAM. This can be a nuisance at times,
especially if you get the setup wrong and accidentally get the tnc into a
locked up state. The only remedy is to take the cover off of the box,
disconnnect the battery, re-connect it again a few seconds later, and
then replace the cover.

It’s highly likely that you’ll get the tnc settings wrong when first setting
up NOS, and so it’s recommended that you fit a single-pole on/off
switch in the battery circuit. Then if you lock up the tnc, it’s a simple

72 Hands On — Hardware Checkout © @

matter to turn the switch off and on again to make the tnc usable again,
without the hassle of removing and replacing the cover. (In fact, you
can probably operate the tnc without a battery at all, as you will
configure NOS to initialise the tnc to KISS mode each time you start
NOS, and reset it back to native AX.25 mode when you are done).

(2)

(8

9

PODOD
3
i

ni25_|

Fig 10-1: The RS-232 cable connects the PC to the TNC.

The RS-232 Cable

The RS-232 cable connecting the PC to the tnc should be a 5-wire
cable, wired for hardware (RTS/CTS) flow control; again see Fig 10-1.
Some tncs with older firmware do not support RTS/CTS in KISS
mode, in which case a simple 3-wire cable (TD/RD/GROUND) will
suffice.

In any case it’s probably preferable to use the 5-wire cable to avoid
possible lockup problems when transferring non-printing ASCII

@ ©® Hands On — Hardware Checkout 73

characters in the tnc’s native mode — XOFF (CTRL-S) may stop data
transfer if software flow control is used.

When hardware flow control is working properly, the following
conditions apply:

RTS HIGH: PC tells the tnc it can start/resume sending data
RTSLOW: PC tells the tnc it must stop sending data
CTSHIGH: tnc tells the PC it can start/resume sending data
CTSLOW: the tne tells the PC it must stop sending data

Native Mode Checkout

Before using NOS, it’s advisable to check out the tnc in native AX.25
mode with hardware flow control. Set the speed of the PC-to-tnc link
to a reasonably high value (e.g. 4800 bps), with an 8-bit data path, and
disable software flow control:

cmd: AWLEN 8
cmd: START $00
cmd: STOP $00
emd: TBAUD 4800
cmd: XON $00
cmd: XOFF $00
cmd: XFLOW OFF

Connect to your local AX.25 PBBS as usual and read a few long
messages. Also send yourself a long message and read it back. Make
sure that nothing is missing from the text on the screen. If some
characters are missing, or if the keyboard or screen lock up, it’s
probable that the hardware flow control is not working.

Make it work properly before proceeding. If flow control does not
work in AX.25 mode, it’s unlikely that NOS will work either, If
everything works with software but not hardware flow control, you
may need to check the state of the RTS and CTS lines (tnc pins 4 and 5
respectively) with a breakout box or multimeter. Most of the time
these lines should be high, dropping only occasionally to the low state
when transferring long messages.

Assuming all is well, you are now ready to install the NOS software.

75

11: HANDS ON —

SOFTWARE INSTALLATION

Several steps are required when installing the software:

¢ Optimising DOS

o Modifying CONFIG.SYS and AUTOEXEC.BAT
e Loading the NOS software

o Configuring the NOS control files

Optimising DOS

As mentioned earlier, NOS is memory hungry and will use as much
memory as you can give it. This means that you should minimise the
DOS overhead as far as possible. There are several ways to do this.

First, as NOS does not require graphics memory, the biggest potential
saving is to tell DOS to release the video RAM that it uses for the
graphics pages (for example, with the DR-DOS command
MEMMAX +V, or with the Quarterdeck VIDRAM program). This
step alone will make an extra 96K of RAM available in conventional
memory. '

You should load as much of DOS as possible into upper memory or
high memory.

You should also load your favourite TSR (Terminate and Stay
Resident) programs into upper/high memory if possible.

With these precautions in place, you’ll probably find that you now have
over 700K of conventional RAM available for NOS.

76 Hands On — Software Instailation @ @

Modifying CONFIG.SYS and AUTOEXEC.BAT

A small number of additions and modifications to the DOS files
CONFIG.SYS and AUTOEXEC.BAT are required to run NOS.

CONFIG.SYS should have at least the following commands:

BREAK=0N

BUFFERS=20

FILES=20

LASTDRIVE=z

SHELL=c: \command.com /P /E:1024
DEVICE=c:\dos\ansi.sys

The LASTDRIVE variable is required because NOS will be configured
to use SUBSTituted drive letters up to the letter V-.

The SHELL variable has the /E parameter, to set the environment space
to 1024 bytes. This is to ensure there is sufficient room for NOS
environment variables.

The ANSL.SYS device driver lets you use ANSI escape sequences in
text strings (for example, to display the command prompt in reverse
video).

AUTOEXEC.BAT will contain all the usual commands, plus the
following:

CALL c:\nos\nosenv.bat

(assuming that you place NOS in directory C:\NOS).

The batch file NOSENV.BAT, described below, sets up the NOS
environment variables.

Loading the NOS Software

The simplest way to install NOS is to acquire a copy of NOSview,
which contains all the files you need, plus an installation script which
puts them in the proper place. Details of how to obtain NOSview were
included in Chapter 2, and full installation instructions are in the
IREADME.IST file in NOSview.

@ ® Hands On — Software Installation 77

If you don’t have a copy of NOSview, you’ll have to install NOS and
prepare all the control files by hand. Full listings of the control files
are included in Appendix 3.

Whichever way you install NOS, you’ll need decide on the NOS root
directory; i.e. the top level DOS directory which NOS will use. In this
book we use C:\NOS as the NOS root, but in principle you can place it
anywhere.

However, be aware that when NOS is operational, other people will be
logging into your system and may browse around your files, from the
NOS root level downwards. For this reason, C:\ is not recommended
as the NOS root!

It’s convenient to use a SUBSTitued drive for the NOS root — see Fig
11-1. This is set up in NOSENV.BAT, with a command of the form
SUBST N: C:\NOS. Thereafter, you can make all references to NOS
files relative to drive V..

ni 26

Fig 11-1: The NOS root directory is defined as drive N: in this
book, using the DOS command SUBST N: C:\NOS.

78 Hands On — Software Instailation @ @

The NOS Directory Tree

NOS requires the following directory tree. If you are installing NOS
manually, you’ll need to create the following directories (with the DOS
MKDIR command), replacing N: with your chosen NOS root directory
(e.g. C:\NOS).

W\

M \DUMP\
N : \DUMP\RECORD'\
N: \DUMP\TRACE\

N:\FINGER\

N:\PUBLIC\

N:\PUBLIC\MASTERS\
N:\PUBLIC\NOSDOCS\
N:\PUBLIC\NOSVIEW\

N:\SCRIPTS\

N:\8SPOOL\

W: \SPOOL\HELP\
N:\SPOOL\MAIL\

H: \ SPOOL\MQUEUE',
H:\SPOOL\MEWS\
N:\8POOL\RQUEUE\,
H: \SPOOL\SIGHATUR\

W: \TMP\

Once the directory tree is in place, the files listed in the box opposite
need to be installed.

Configuring the NOS Control Files

Several of the files listed opposite require tailoring before you use NOS
on-air. This mostly involves changing callsigns, IP addresses, routing
tables, and so on, to suit your local environment. Details of exactly
how to make the necessary changes are included in subsequent
chapters. However, the files supplied with NOSview are usable as
they stand — provided, of course, that you leave your radio switched
off.

@©® Hands On — Software Installation 79

N:\ALIAS
N:\AUTOEXEC.NOS
N:\AX25.COM
N:\CLEANQ.BAT
NW:\DOMAIN.TXT
M:\FTPUSERS
M:\HET.RC

M : \HOSxxxxx . EXE (the NOS executable)
N:\NOSENV.BAT
N:\PCELM.EXE
HW:\PCELM.MSG
N:\PCELM.RC
N:\POPUSERS
N:\REMOTE . BAT
N:\SIGNATUR
N:\STARTNOS . BAT
N:\UUDECODE. EXBE
N:\UUENCODE . EXE
N:\VIEW.COM
N:\VIEW.HLP
N:\WD8003.CoM

N:\FINGER\SYSOP

N:\PUBLIC\MASTERS*. * (HosSview control file masters)
N:\PUBLIC\NOSDOCS*.* (NOSview documentation files)
W:\PUBLIC\NOSVIEW*.* (NOSview HELP files)

N:\SCRIPTS\FKEYS.LST
M:\SCRIPTS\FKEYS.SCR
N:\SCRIPTS\KISSON.DIA
W:\SCRIPTS\TNCRESET.DIA
W:\SCRIPTS\TNCRESET.SCR

N:\SPOOL\AREAS

W:\SPOOL\FORWARD . BES

N:\SPOOL\REWRITE

M:\SPOOL\HELP* _* (the NOS BBS help files)

N:\SPOOL\SIGNATUR\SYSOP.SIG

Fig 11-2: NOS Files. Their functions are described in the next
chapter.

80 Hands On — Software Installation @ @

In fact, you can learn a great deal about NOS before using it for real,
so it’s recommended that initially you leave the files alone. Try
working through the hands-on sessions in this book as far as you can
with the radio disconnected, then edit the control files to reflect your
own environment before going live.

Checking the VIEW Fileviewer

Having installed the software, you should then re-boot the system.
When AUTOEXEC.BAT runs, it will now call NOSENV.BAT, which
sets up the NOS environment. You should see the message:

Loading VIEW - Clockwork’s Resident File Viewer.
To activate press:- RShift and SPC

This confirms that the VIEW TSR file viewer is loaded. VIEW lets you
examine any file in the system, ASCII or binary, in text or hexadecimal
format. Test its operation by pressing the right shift key and the space
bar simultaneously. The Clockwork View introduction screen should
appear. Use the PgDn and PgUp keys to examine the help menus.

Then test the file viewer, by pressing F3. The prompt:

ﬂ Load file: *_ * !l

should then appear at the top of the screen. Now press CR. This
should pop up a list of files in the current. directory, similar to the
example in Fig 2-1. Move the arrow keys up or down to select a
particular file, then press CR again. The selected file should now
appear.

Use the G and/or H key to change the display format if necessary.
Finally press ESC to exit from VIEW.

SUBSTIituted DOS Drives

Type the DOS SUBST command, and confirm that all of the
SUBSTituted drives defined in NOSENV.BAT are available:

@ ©® Hands On — Software Installation 81

=> C:\NOS\SPOOL\MAIL

=> C:\Nos

=> C:\NOS\SPOOL\MQUEUE
=> C:\NOS\DUMP\RECORD
=> C:\NOS\DUMP\TRACE

=> C:\NOS\PUBLIC\NOSVIEW

SRR ER

Change directory to the NOS root directory (V:\), and check that all the
files and directories listed above are accessible. Also, change to
directory ¥:\ and check that the NOSview files are present.

Now type the DOS SET command, and check the NOS environment
variable settings defined in NOSENV.BAT are correct. Also check that
the N:\ directory has been appended to the original PATH list:

PATH=C:\dos; ... N:\
HOME=C:\nos
MATLER=N:\pcelm.exe

TMP=N: \ tomp
TZ=UTC
USER=nsS%bab

The meanings of these variables are explained in later chapters.

With software installation complete, it’s now time to look closer at the
files.

12: NOS FILE COMPENDIUM

In this chapter we take a closer look at the directory structures and
data files in the NOS environment. This includes the files listed in the
previous chapter, plus other files which NOS generates at runtime.

Examples of all the text files are included in Appendix 3.

The Directory Tree

The complete directory/file tree for NOS is shown in Fig 12-1 on the
next page. NOS can reside in any directory on any drive, but as
explained earlier, it’s best to allocate a new drive letter for NOS (e.g.
N:), using the DOS SUBST command. This has the advantage that the
path declarations in the NOS control files are kept simple, and, more
important, it prevents people browsing through your private files when
they log into your system. You don’t want other people climbing too
high up your tree!

The NOS directories under drive N: are as follows:
/: The root directory contains most of the files for controlling NOS.
/dump: This directory is for log and trace files.

/dump/record: Holds session recordings and files downloaded from a
mailbox.

/dump/trace: Holds trace files.

/finger: The NOS finger command allows you to “put the finger on
somebody™; i.e. find out more about them. The finger directory

contains one or more text files with information about yourself (the
so-called “brag” files).

84 NOS File Compendium @ @©
/alias /public/masters/* *
/autoexec.nos /public/nosdocs/* .+
N:\AX25.COM /public/nosview/* *
N:\CLEANQ.BAT
/domain. txt /scripts/fkeys.lst
/£tpusers /scripts/fkeys. scr
/net.xrc /scripts/kisson.dia

/netrom.sav

N: \NOSxxexx . EXE
W: \NOSENV.BAT
N:\PCELM.EXE
N:\PCELM.MSG
N:\PCELM.RC
/popusers
N:\REMOTE, BAT
/seqf

/signatur

N: \STARTNOS . BAT
N:\UUDECODE . EXE
N:\UUENCODE.EXE
N:\VIEW.COM
M:\VIEW.HLP
N:\WDB003.COM

/dump/session.log
/dump/record/* . *
J/dump/trace/*.*
/finger/sysop

/public/* .+

/scripts/tncreset.dia
/scripts/tncreset. scr

/spool fareas

/spool /forward.bbs
/spool /history
/spool/mail.log
/spool /rewrite
/spool/help/*.hlp
/spool/mail/*.txt
/spool /mqueue/* . txt
/spool /mqueune/* .wrk
/spool/mqueue/* . lck
/ spool /mqueue/sequence.seq
/spool/news/*.*

/spocl/rqueue/* . txt
/spool /rqueue/* .wrk

/spool/signatur/*.sig

/m/*_i

Fig 12-1: The complete NOS file tree. DOS filenames are in
capital letters, NOS filenames in lower-case. Filenames in light
text are created by NOS at run-time.

/public: This is a general-purpose directory which anyone can access
when logged into your system. The directory contains files for
general consumption, and certain nominated users can also write
into it.

©®® NOS File Compendium 85

/public/masters: This directory contains master copies of the NOS
control files. The files in this directory are read-only, to prevent
accidental damage.

/public/nosdocs: The nosdocs directory contains a set of
miscellaneous NOS documentation files. The files in this directory
are also read-only.

/public/nosview: This directory contains the complete set -of
NOSview reference documentation files, so that other people can
read them to find out more about NOS. The files in this directory
are read-only. DOS drive letter V- also points to this directory, so
that you can instantly access NOSview.

/scripts: This directory contains scripts for use with the NOS source
command, together with dialer scripts for setting up a modem or
tnc.

/spool: The spool directory contains a number of files to do with mail
handling.

/spool/help: The help subdirectory contains a set of help text files
used by the built-in NOS mailer.

/spool/mail: This is the default directory for incoming mail, for
outgoing POP mail, and for outgoing mail to be forwarded into the
PBBS network.

/spool/mqueue: This is the directory containing all outgoing mail
awaiting SMTP forwarding.

/spool/news: This directory contains files received from the news
network with the NNTP protocol. ,

/spoob’rqueue The rqueue directory is an alternative directory for
incoming mail (i.e. instead of /spool/mail).

/spool/signatur: This directory holds one or more text files containing

your “signature” to be appended to messages which you send with
the NOS BBS.

/tmp: This directory is for temporary work files.

DOS Files
This section describes the DOS files required by NOS.

\NOS File Compendium @&

CANUTOEXEC.BAT: (see page 312 jor listing) This file serves its
usual purpose during DOS startup. The only special requirement is
that it includes a CALL to NOSENV.BAT, to set up the correct
working environment for NOS. If you include any TSRs in
AUTOEXEC.BAT, it is recommended that you load them in upper
memory, to free up as much conventional RAM as possible for
NOS. Further, you may also care to use a utility such as
Quarterdeck’s VIDRAM to free up the PC’s graphics buffer area,
thus making it available to NOS.

CACONFIG.SYS: (page 317) The usual DOS configuration file.
The only special requirements are the inclusion of the LASTDRIVE
environment variable (allowing us to define a number of
SUBSTituted drives), and the use of the /E option with the SHELL
variable to make the DOS environment space large enough.

CADOS\ANSLSYS: The usual device driver for screen and keyboard
handling. Alternatives such as NANSLSYS, ZANSLSYS or
VGAANSI.SYS are equally suitable here.

NAAX25.COM: The special TSR driver for the Baycom modem.

NACLEANQ.BAT: (page 317) This batch file removes any unsent
messages and lock files from the outgoing mail queue, and any
unsent messages awaiting PBBS forwarding. This is a useful utility
for cleaning up after experimenting with mail handling off-air.

N:ANOSxxxoox. EXE: This is the NOS runtime executable. The
letters x000¢x represent a date code or version number.

N:\NOSENV.BAT: (page 325) Called by AUTOEXEC.BAT at DOS
startup, this file initialises the NOS environment. There are six
SUBST commands to define new drive letters:

defines the incoming mail queue

(useful for taking a quick loock at files in the queue)
defines the NOS root directory

defines the NOS outgoing mail queue

(uzeful for taking a quick look at what is in the gqueue)
defines the NOS record directory

(useful for taking a quick look at downloaded files)
defines the NOS trace directory

(useful for scrolling through trace files)

defines the NOSview directory

s 3 @@ pE =

(useful for examining NOSview files)

©@® NOS File Compendium 87

NOSENV.BAT also contains a number of environment variable
definitions:

HOME: this is the home directory for the external mailers (BM,
PCElm and ELM) .

MAILER: this is the name of the external mailer which you
call when you give the NMOS mail command.

TMP: this the the name of the temporary directory for the
external mailers.

TZ: this is the time-zone, used by mailers.

USER: this is the name of the user, used by the ftp command.

NOSENV.BAT then calls the VIEW TSR. VIEW is quite large
(around 13 KB), so you should load it into upper memory if
possible.

Finally, NOSENV.BAT installs the device driver(s) for devices
which NOS does not support directly. This will be necessary for
devices like Ethernet adapters, or for the Baycom AX.25 driver
(AX25.COM).

N\PCELM.EXE: PCELM is a popular external mailer, invoked with
the NOS mail command. The DOS environment variable MAILER
specifies the name of this file. (Alternative external mailers
commonly supplied with NOS are ELM and BM).

NAPCELM.MSG: This file contains the text of PCEIm help and
status messages. You can edit this file to provide help in different
languages if you wish.

NAPCELM.RC: This is the startup file for PCELM (¢ means “run

commands™). The corresponding startup files for ELM and BM
are, predictably, ELM.RC and BM.RC.

NAREMOTE.BAT: (page 326) This batch file runs NOS i a
continuous loop, and is intended for use at remote site locations. If
NOS stops running for some reason, DOS goes back to the
beginning of the loop and restarts it.

NASTARTNOS.BAT: (page 328) This is a simple DOS batch file
that starts NOS running,

NAUUENCODE.EXE: This command performs binary-to-ASCII
file conversion. Encoding of 8-bit binary files into 7-bit ASCII is

88 NOS File Compendium 0@

necessary prior to uploading/downloading of binary files to/from the
NOS BBS (This is only required for AX.25 users of the BBS. FTP
can handle 8-bit binary file transfer without encoding).

NAUUDECODE.EXE: This command converts uuencoded files from
ASCII back to binary.

NAVIEW.COM: This is the VIEW fileviewer from Clockwork
Software.

NAVIEW.HLP: The help file for VIEW.

NAWDB8003E.COM: This is an example of a Clarkson Ethernet
driver.

NOS Files

This section describes the complete set of NOS files. All the file
pathnames given below are relative to the NOS root drive, N:.

/alias: (page 311) The alias file contains a list of alternative names
for mailing, allowing you to use easily-remembered names when
sending mail. Also, the file can contain distribution lists for sending
messages to groups of people.

/autoexec.nos: (pages 312-317) This is the big daddy of the NOS
control files. The name autoexec.nos is the default name for this
file, but you can choose a different name if you wish. You can
create a number of different startup files for different situations or
configurations, and switch quickly from one scenario to another
without having to edit the startup file every time.

In this chapter we only look at the main functions of this file, and
then in later chapters we will analyse each of the functions in detail.
The main sections of qutoexec.nos are as follows:

Miscellaneous Setup: These commands are for general NOS
housekeeping.

Domain Defaults: These defaults make it easier to use domain
addressing. They let you use simple commands like ftp ns9ken
instead of the full ftp ns9%en.ampr.oryg, and in status reports
you will see host names displayed as ns9ken rather than the
less meaningful 44.199.41.2,

@ ® NOS File Compendium

Station Identification: Here you define your IP and AX.25
addresses.

TNC Setup: The commands in this section initialise the tnc at
the physical level. The attach command defines the interface
name (tnec0), sc that later commands can use this name when
addressing the interface. The dialer script kisson.dia
switches the tne to KISS mode, and the param commands set up
various parameters inside the tne.

The Baycom AX.25 Packet Driver: This command makes the link
between NOS and the Baycom AX.25 driver TSR.

Setting up AX.25: Here you define the usual parameters for
the AX.25 level.

Other Interfaces: At this point in the startup file are
commands for defining interfaces for the Ethernet adapter and
for an AX.25-over-IP (axip) "wormhole" link.

Interface Configuration: The ifeconfig command lets you
define broadecast and network mask parameters for the tne
interface.

TCP/IP defaults: Here are the initial wvalues for critiecal
TCP and IP parameters.

Starting Network Services: This is where you start all of
the network servers (listeners). Once these are running,
clients on other machines can then establish communication
with them.

N_n-/mu Configuration: Where TCP/IP traffic is carried over
a NET/ROM link it is necessary to set up a large number of
NET/ROM parameters. These commands start the NET/ROM server,
define your own NET/ROM alias (#BOB in the example), and
initialise a number of timers and counters.

NK'.‘I‘(ROH Filtering: In some instances it may be preferable to
accept NET/ROM broadcasts from only a limited number of
nominated stations, rather than to accept broadcasts from any
station which might be in range. The netrom nodefilter
commands let you nominate the stations of interest (or
alternatively filter out unwanted stations).

IP Routing Table for NET/ROM: This table is required for NOS
stations which are contacted via NET/ROM.

The ARP Table for NET/ROM: The ARP table specifies the

relationship between IP hostnames and NET/ROM callsigns.

NET/ROM Routing: Entries in this section let you set up the
NET/ROM routing table.

endium 0@

AX.25 Routing: The entries in the AX.25 routing table allow
you to specify any digipeaters in paths to AX.25 destinations.

AX.25 Modes: Here you can specify whether virtual circuits
or datagrams are to be used.

More ARP Table entries: This part of the file contains more
ARP table entries specifying the relationship between IP
hostnames and AX.25 callsigns (or Ethernet adapter addresses).

IP Routing Table: The IP routing table contains entries for
groups of stations and/or individual stations, specifying the
local interfaces to be used and the hostnames of remote IP
gateways which will handle the traffic.

Routing Interface Protocol: The RIP commands control IP
routing table broadeasts, and allow you to filter particular
broadeasts in a similar way to NET/ROM node filters.

RSPF: The RSPF commands are an alternative to RIP.

Hop Check: These commands specify timer constants for use
with the hop commands when tracing the availability of
particular routes.

Remote Control: These commands kick other hosts within radio
range into life. The resulting traffic thus forces an
automatic update of the routing tables.

Setting up the NOS BBES: The smtp commands initialise SMTP
mail forwarding. The smtp kick command forces the SMTP client
to scan the outgoing mail queue and to forward any IP mail.
The mbox kick command wakes up the mailbox client and forces
it to forward any AX.25 PBBS mail.

POP Commands: These commands configure the POP mail
forwarding service.

FTP Defaults: These parameters specify how FTP is to
transfer files by default.

Function Key Definition: The script fkeys.scr contains
definitions for all of the function keys and cursor keys.
These definitions let you execute frequently-used NOS comands
with just one or two keystrokes, making it much easier to
drive.

/domain.txt: (pages 318-319) The domain.txt file contains a list of
station names, such as ns9ken.ampr.org, together with their
corresponding IP addresses. (In some versions of NOS, this file is
called hosts.net and has a different format).

@@ NOS File Compendium 91

/ftpusers: (pages 322-323) The fipusers file contains a list of people
who are allowed special privileges on your system, when using the
ftp command or when logged into your mailbox. You can therefore
give permission to specific individuals to create, write or delete files
in nominated directories, and let them access various network ports
via your mailbox. And you can even let them operate your station
remotely if you want!

/net.rc: (page 324) The net.rc file contains username/password pairs
for one or more remote hosts. When you ftp to those hosts, you will
be automatically logged in and can start FTP transfers immediately.

/netrom.sav: This file is created when you give the netrom save
command. It contains the dynamic NET/ROM routing table entries
which have been received in broadcasts. You can later give the
netrom load command, which will read this file and restore the
NET/ROM routing table to its original state at the time when the
file was created. This means that you don’t have to wait for new
broadcasts after restarting NOS.

/popusers: (page 326) This file contains a list of username/password
pairs used with the POP mail forwarding protocol.

/seqf: This file is maintained automatically by the ELM mailer, and
contains the current message number for an outgoing message.

/signatur: (page 327) This file contains the text to be appended to the
end of any messages you send with the PCEIm mailer. Note that
there is a separate signature subdirectory which is used by the NOS
built-in mailer; see below. [Having two different methods of adding
a signature 1o a message, depending on whether you’re using PCelm
or the NOS BBS, is just plain silly and should be unnecessary.
However, we have to live with it at present].

/dump/session.log: The session log is maintained by NOS, and
contains NOS startup and shutdown times, together with a detailed
record of almost everything that NOS does. This is invaluable when
trying to find out what actually happened and what didn’t!

/dump/record/*.*: These files are session recordings (created by the
NOS record command) or files downloaded from a BBS.

/dump/trace/*.*: The files in this directory contain full trace
information of packet traffic sent and received by this station.
These trace files are essential when setting up NOS and debugging.

92 NOS File Compendium @@

/finger/sysop: (page 329) This is an example of a “brag” file. When
a remote user gives the command finger sysop@ns9bob, this file is
sent to the user, and tells him all about you.

/public/masters/*.*: These are master copies (read-only) of the NOS
control files.

/public/nosdocs/*.*: These are miscellancous NOS documentation
files.

/public/nosview/*.*: These are the on-line NOSview documentation
files.

/scripts/fkeys.Ist: (page 319) This is a text file which is displayed
when you hit the F1 help key. It lists all the function key
definitions.

/scripts/fkeys.scr: (pages 320-321) ‘This is the file which programs
the function keys and cursor keys, and corresponds to the fkeys.Ist
file.

/scripts/kisson.dia: (page 324) This script sets the speed of the PC-
to-tnc serial link to 4800 bps, and then sends a number of asterisks
to the tnc. Hopefully the tnc will recognise them and autobaud into
native command mode. The script then sets up the tnc with your
callsign and Morse ID (MID) interval; the value 84 corresponds to
840 seconds (14 minutes). Finally, the script sets the tnc into KISS
mode.

This script was written for a PK-88 tnc; you may need to change it
if you have a different tnc,

/scripts/tncreset.dia and tncreset.scr: (pages 329-330) These scripts
reset the tnc to native mode.

/spool/areas: This text file is used by the NOS BBS, and is output in
response to the BBS A command. It contains a list of public
mailbox names.

/spool/forward.bbs: (page 321) The forward.bbs file specifies how
and when messages are to be forwarded onto the AX.25 PBBS
network.

/spool/history: The history file is generated by the built-in NOS
mailer, and contains a list of received bulletin IDs. If a bulletin
arrives in the system with an ID which already exists in the history
file, NOS rejects it.

©® NOSs File Compendium 93

/spool/mail.log: The mail log contains details of every attempt to send
and receive mail. This is where to look if mail transfer is not
working.

/spool/rewrite: (page 327) The rewrite file contains the rules for re-
addressing mail (e.g. for forwarding onto the PBBS network).

/spool/help/* hlp: These are short text files containing instructions on
how to use the NOS BBS commands. There is one file per
command.

/spool/mail/*.txt: The .ixt files contain incoming messages, which
you can then read with a mailer. There is one file per individual
user and one per public mailbox area; for example, all of
NS9BOB’s messages are in file ns9bob.1xt, and all bulletins in the
TCPIP area are in the file rcpip. fxt.

In addition, there may be other .7xt files in this directory, for
outgoing mail to be forwarded into the AX.25 PBBS network or for
POP forwarding.

/spool/mgueue/*.txt: The .txt files in this directory contain the text of
outgoing messages.

/spool/mqueue/*.wrk: The .wrk files contain message To: and From:
information, together with the name of the host to which the
message is to be sent.

/spool/mqueue/*.Ick: The .Ick files are lock files which SMTP
creates when attempting to send a message.

/spool/mqueue/sequence.seq: This file is maintained automatically
by the NOS BBS and PCEIm mailers, and contains the current
message number for an outgoing message.

/spool/news/*.*: The files and subdirectories below /spool/news are
used by the network news protocol NNTP.

/spool/rqueue/*.txt and /spool/rqueue/*.wrk: This directory is an
alternative to the default incoming mail directory (/spool/mail). The
.1xt files have the same format as those in the default mail directory.
The .wrk files have a similar but not identical format to those in the
default mail directory.

/spool/signatur/*sig: The signature files in this directory are short
text files which the built-in NOS mailer automatically appends to
the end of messages which you create. Which file is used depends

94

NOS File Compendium ©®

on how you log into the NOS BBS. If you log in as ns9bob, then
the mailer uses the signature file ns9bob.sig, but if you log in as
sysop, then sysop.sig is used instead.

Note that these signature files are used by the NOS BBS. If you
use the PCEIm mailer, the file /signatur will be used instead.

/tmp/*.*: The files in this directory are temporary working files,
usually created by external mailers.

95

13: HANDS ON — SESSION MANAGER

Having installed the hardware and software, and become familar with
the functions of most of the files, you are now almost ready to start
NOS. This chapter covers the final steps required to tailor NOS to
your environment, then explains in detail exactly what happens when
NOS starts up. Once NOS is running, you can then get to know the
Session Manager.

The first time you run NOS, make sure that the radio is turned off.
Only when you are confident that all the control files are set up
properly with real callsigns and IP addresses should you consider going
live.

Choosing a Serial Port

Before you can communicate with the tnc, you have to specify which
asynchronous serial port you are going to use (i.e. COM1, COM2,
COMS3 or COM4), by removing the # symbol from the front of one of
the following attach asy commands in autoexec.nos:

attach asy Ox3f8 4 ax25 tncO 2048 256 4800 # COM1
attach asy Ox2f8 3 ax25 tncO 2048 256 4800 # COM2
attach asy Ox3e8 4 ax25 tncO 2048 256 4800 # com3
attach asy Ox2e8 3 ax25 tncO 2048 256 4800 # coM4

L R

The first two numeric parameters (¢.g. 0x3f8 and 4) are the I/0 address
and IRQ number for the port respectively.

The name tnc0 is a symbolic interface name for the port. You can
choose anything you like here (but tnc0 is used throughout this book
for consistency). You will use this name in future commands to refer
to this port.

96 Hands On — Session Manager @ ©

The next two numeric parameters (2048 and 256) are to do with buffer
and packet sizes, and need not be changed.

The last parameter on the line (4800) is the speed of the serial link to
the tnc. You may care to increase this to 9600 or even higher if your
machine is fast enough; in general, the faster the better, to minimise
bottlenecks on the link.

So, for example, if your tnc is attached to COMI1 and the link runs at
9600 bps, the line will read:

attach asy Ox3f8 4 ax25 tncO0 2048 256 9600 # comi

Starting NOS

There are several different ways you can start NOS, and to make things
easy it’s convenient to put the startup commands in a .BAT
file — you’ll be starting and stopping NOS many times, so a .BAT file
saves a lot of typing. You can also make several .BAT files for
different startup situations.

Appendix 3 contains a typical NOS startup file, STARTNOS.BAT (see
page 328). It performs several functions.

First, the PROMPT symbol is redefined to read:

Se [5mEXIT TO RETURN TO NOS Se[OmSe(44m$pSgse(m Iﬂ

(The $e sequences in the PROMPT string are ANSI escape sequences
to make the text string EXIT TO RETURN TO NOS flash, and to
display the current directory name in green. You can remove these
sequences if you have an aversion to flashing lights or green text!).

Why change the prompt from its usual C:\> form? Well, when NOS is
running, you can escape to a DOS shell if you want to do DOS things.
The new prompt reminds you that you are not in a default DOS shell,
and that you need to give the EXIT command to return to NOS.

Next, for DR-DOS users, the startup file executes the MEMMAX +V
command. This makes 96 KB of additional RAM available.
(Alternatively, if you are using Quarterdeck’s QEMM package, you

©®® Hands On — Session Manager 97

can give the VIDRAM ON command to gain access to this extra
memory).

The IF EXIST statement tests for the existence of * LCK files in the
Q: directory (recall that Q: is a SUBSTituted drive for the outgoing
mail directory /spool/mqueue). These lock files appear when NOS is
attempting to forward mail to another station, and normally disappear
when forwarding is complete. However, if you stop NOS before it has
a chance to remove the lock files, the forwarding system is left in an
indeterminate state. Thus during startup, STARTNOS.BAT forcibly
removes any lock files.

The next command:

N:\NOS_20M.EXE /autoexec.nos

starts NOS itself. The NOS executable is NOS 20M.EXE, and
autoexec.nos is the NOS startup file.

IMPORTANT: Note that the slash preceding the startup file name is a
forward slash, not a backslash. The slash indicates that the file is at
the NOS root level (i.e. drive N:).

The general syntax for NOS startup is:

nos.exe [-b] [-2 n] [-d /directory] [-VvI Ist;arblw_fila]

The -b option: This option specifies the use of the PC’s BIOS for
console output. Normally NOS writes direct to the video display
buffer for speed, but in certain circumstances (e.g. when running a
windows package) this may cause bleedthrough. Selecting the -b
option should remove this problem; e.g.

N:\NOS_20M.EXE -b /autoexec.nos

The -s option: This option defines the number of sockets for use by
NOS. Sockets are data arrays used for network connections; you
typically need four sockets for most types of connection. The
default number of sockets is 40. Increase this number if you
anticipate running many sessions in parallel. For example:

N:\NOS_20M.EXE -s 60 /autoexec.nos

98 Hands On — Session Manager 0 ®©

The -d option: This option lets you specify a different root directory
for the NOS configuration and spool files. Its use is not
recommended, as some of the commands in NOS (e.g. finger) do
not understand it. It’s much cleaner and more secure to root NOS
on a SUBSTituted drive, and to make all file references relative to
that root.

The -v option: This option gives a verbose output at NOS startup
time, displaying each startup command as it executes. This is useful
for detecting errors in the startup file, or if NOS hangs during
initialisation. For example:

N:\NOS_20M.EXE -v fautoexec.nocs

The default name for startup_file is autoexec.nos (so it isn’t really
necessary to include it in the above examples). You can create any
number of NOS startup files if you wish, to cater for different
operating scenarios.

The rest of STARTNOS.BAT restores the original DOS environment

after you finally exit from NOS. That is, the 96 KB block of video
RAM is released and the prompt is restored to its original state.

Lift Off!

You are now finally ready to start NOS. Switch on the tnc, and make
sure that it’s working properly in native cmd: mode. Then type the
STARTNOS command at the DOS prompt. NOS will run
autoexec.nos, and eventually something like the display in Fig 13-1
opposite will appear on the screen.

net> is the Session Manager prompt. If it doesn’t appear immediately,
just hit CR a couple of times — it should then appear.

Switching the TNC from native mode to KISS mode

The last few lines (starting at Dialing on tnc0) appear when NOS calls
the dialer script near the start of aufoexec.nos. The script itself,
kisson.dia, is in directory /scripts; see Appendix 3 for a listing (page
324),

©@® Hands On — Session Manager 99

KASQ NOS version 911229 (PAOGRI v2.0m)
This version produced by PAOGRI
Copyright 1991 by Phil Karn (KASQ) and contributors.
TxDelay: 20

Persist: 63

SlotTime: 10

TxTail: 10

FullDup: O

DTR: 1

RIS: 1

N: /DUMP/RECORD

Dialing on tncO

MYCALL NSSBOB-5

MID 84

XMITOK ON

KIsSs ON

Dial tnc0 complete

net>

Fig 13-1: The NOS startup screen.

The purpose of the script is to switch the tnc from native cmd: mode
into KISS mode — see Fig 13-2. Afier setting the link speed to 4800
bps, the script then sends a number of asterisks at 200 millisecond
intervals, giving the tnc an opportunity to autobaud to the correct
speed. The script now sends a \r (CR), waits up to one second for the
cmd: prompt, and then sets up the AX25 Ccallsign
(MYCALL NS9BOB-5). This is followed by MID 84 (to set the
Morse ID interval to 840 seconds — 14 minutes) and XMITOK ON
(to enable the tnc PTT line). Finally, the KISS ON command sets the
tnc into KISS mode.

This script is applicable to an AEA PK-88 tnc with the RAM backup
battery removed. That is, each time NOS starts up it is assumed that
the tnc is in its reset state — if it’s already in KISS mode, then the tnc
will ignore the script commands. If you have a different type of tnc, or
want to use a different sequence of commands to set it into KISS mode,
then you will need to modify the script. (On the other hand, if the
backup battery is in place and you leave the tnc permanently in KISS
mode, you won’t need the script at all).

100 Hands On — Session Manager ©©

send seed
wait cmd: |4 cma:
send MYCALL
send MID 84

send XMIT ON

ni 27

Fig 13-2: NOS startup. The dialer runs kisson.dlia, which
autobauds the tnc (by sending a stream of asterisks). The tnc
responds with the native mode cmd: prompt. Then the dialer

sends commands to set up the callsign and CWID interval, and
to enable the PTT line. Finally the dialer sends the KISS ON
command to switch the tnc to KISS mode.

First Steps

To find out which commands this version of NOS supports, give the ?
or help command — see Fig 13-3.

Note that all of these commands are in lower case; NOS understands
cd, but will not understand CD or Cd or ¢D.

Note also that you can abbreviate commands, provided that they are
still uniquely recognisable. For example, you can type star instead of
start (but not sta, as status also begins sta).

©®® Hands On — Session Manager

101

net> 7
!
attach
ed
dir
dump
finger
hop

ip

lzw
mode
nntp
pwd
rip
shell
start
telnet
trace

abort
attended
close
delete
echo
fkey
hostname
isat
mail
more
param
record
rmdir
skick
stop
test

udp

arp
ax25s
cls
detach
eol
ftp
icmp
kick
mbox
motd
ping
remote
route
smtp
status
ttylink
upload

autoroute
bbs

camm
dialer
escape
ftype
ifeconfig
lock
memory
multitask
popmail
rename
session
socket
tcp
third-party
watch

asystat
connect
disconnect
domain
exit
help
info

log
mkdir
netrom
ps

reset
sccstat
source
tail

tip
watchdog

Fig 13-3: The NOS command set.

To find out some more information about this particular release, give
the info command:

net>

info

NOS configuration information.

Containing: AXIP,
POP3zerver,
Russell Nelson modsets

Generic async interface (via 8250/16450/16550)

SLIP async interface (via B250/16450/16550)

(via 8250/16450/16550)

KISS8 async interface

TCP servers,

POP2client,

POP2Zserver,
RIP, HOP, MAILBOX, LZIW,

(PAOGRI wversion 920424)

FTP Software’s PACKET driver interface
Generic SCC (B530) driver
NET/ROM network interface
Van Jacobson compression on SLIP/PPP
IP access control

POP3client,

and the

The status command gives us further useful information:

net> status
KASQ Internet Protocol Package, v911229 (PAOGRI vZ.0m)
This version produced by PAOGRI

NOS load information: Code Segment=1f75 - Data Segment=71le3

The system time is Sat Aug 15 13:55:47 1992
NOS was started on Sat Aug 15 13:54:52 1992

Elapsed time => 0 days:00 hours:00 minutes:55 seconds.
The station is currently Attended.

The ‘Message Of The Day’ is
If I’m not here, please leave a message in the mailbox.

Table of Open Files.
Name length offset hnd acc PSP device type/owner
SESSION .LOG 107238 0 1 rw 1EAF drive C: [nos_20m.exe]

Escape to DOS

To escape to a DOS shell, give the ! or shell command. You should
now see the special DOS prompt already set up in STARTNOS.BAT,
and you should be able execute DOS commands. Be aware, however,
that there will only be a small amount of memory available to the shell,
as NOS is still running and occupying most of the available RAM, so
this will limit what you can do in DOS.

Furthermore, you may find when you attempt to escape to DOS that
the PC locks up completely. This almost certainly means that there is
no room for the DOS shell, and you will have to experiment with
CONFIG.SYS and AUTOEXEC.BAT to move as much as possible out
of conventional memory.

When you have finished with DOS, give the EXIT command to return
to NOS.

Let’s Start a Session: The more Command

The help, info and status commands are examples of direct NOS
commands; they respond immediately, and do not start a new session.

©®® Hands On — Session Manager 103

As an example of starting a session, give the command
more /autoexec.nos (note the forward slash — we’re in NOS now).
The screen clears, and then the first page of aufoexec.nos appears, with
the word —More— at the bottom, indicating that there is “more” to
come.

Now hit CR a few times. You’ll see that you are scrolling down the
file, one line at a time. To get the next screenful, hit the spacebar
instead.

Then, before you reach the end of the file, hit the ESC key (or F10 if
you are running a version of NOS which doesn’t support function key

mapping). This will take you back to the Session Manager. Now give
the session command:

net> session
s# Type Rocv-0Q Snd-Q State Remote socket

*1 -1 More o 0 Limbo! fautoexec.nos

The first column contains the session number, and the asterisk indicates
that this is the currently active session. The Type and Remote socket
columns verify that this i1s a more session. The remaining columns are
meaningless in this context.

If you now hit CR, you’ll find that you are back in the more session.
That is, whenever you are in Session Manager and hit CR by itself,
NOS takes you back to the currently active session (indicated with an
asterisk) if there is one.

Now hit ESC again to return to the Session Manager, and try the
command more /nosenv.bat. Again the screen will clear, and the
NOSENV.BAT file appears. Once again, hit ESC, and give the session
command:

net> session
f S# Type Rev=Q Snd-Q State Remote socket

1 -1 More 0 0 Limbo! fautoexec.nos
*2 -1 More o] 0 Limbo! /nosenv.bat

This time, the asterisk is alongside session 2, so if you were now to hit
CR by itself you would return to the NOSENV.BAT file. But how do
you get back to the first session? Simple: just give the command
session 1.

104 Hands On — Session Manager © ©

In other words, you can switch between sessions by giving the session
command, followed by the number of the particular session you are
interested in. (It turns out that this is a round-about way of doing
things — we’ll soon see that there’s a much better solution if your
version of NOS supports function key mapping).

Terminating a Session

Sessions will either terminate naturally (e.g. you have mored the
complete file), or you can terminate them prematurely with the reset
command; for example, reset 2 will terminate session 2. When you
give the reset command, you will find that NOS takes you back to the
session one last time, asking you to confirm termination by hitting CR.

Keyboard Mapping

Almost all versions of NOS recognise function key F10 to mean
“escape to the Session Manager”. You can also define an additional
key to do the same thing, by putting the escape command in
autoexec.nos. For example, if you really wanted to use the “:”
character as an escape character (not recommended), put this command
in qufoexec.nos:

escape

In practice, it’s much more useful to use the ESC key:

escape ESC

Note that the letters ESC represent the Escape key. That is, you need
to ertter this key as a single literal character (for example, if you use
DOS EDIT to edit gutoexec.nos, you prefix the ESC key with
CTRL-P), and it will not be visible in a printed listing of the file.

If you use a variant of PAOGRI’s NOS, you have much more flexibility
in re-defining individual keys, using the fkey command. It’s best to put
the definitions in a NOS script file, and call this script from
autoexec.nos; see the command source /scripts/fkeys.scr towards the
end of autoexec.nos — source means “run a script containing NOS

©®® Hands On — Session Manager 105

commands.” Appendix 3 contains a listing of fkeys.scr (pages 320-
321).

The listing includes the numbering scheme for the keys which you can
map: the function keys F1 to F10 (in normal, shift, control and alt
modes), plus the PgUp, PgDn, Home, End, Ins, Del and arrow keys.
For example, key 60 corresponds to F2, key 85 to SHIFT-F2, key 95 to
CTRL-F2 and so on.

The definition for each key is defined in the fkeys script as a text string
between inverted commas (" "). To include a control character, prefix
the character with a caret (*) symbol; e.g. #M means CTRL-M (CR).

Each command begins with *[, which means ESC. That is, you first
escape from the current session back to the Sess1on Manager, before
executing the rest of the string.

Some of the commands end in AM, which means they are executed
immediately. Others do not end in AM, giving you the chance to add
extra information, or the opportunity to think before you hit CR — you
certainly don’t want to reset the tnc with CTRL-F1 by accident, for
example!

Note that F1 (fkey 59) is defined as "A[tail /scripts/fkeys.Ist*M". Thus
when you hit F1, NOS will display the tail end (the last few lines) of
Jkeys.Ist, which just happens to contain a help list for the mapped keys;
see Appendix 3 for a listing of fkeys.Ist (page 319).

Note also that the up-arrow (fkey 72) is defined as CTRL-B. This
means “repeat the last command.”

Now try repeating the more commands described earlier, using the
ESC key to return to the Session Manager, and F2 to list the sessions,
and CTRL-F5 to reset a session. Use F1 whenever you need help.
Then start several other more sessions, and use ALT-F1 to switch to
session 1, ALT-F2 to switch to session 2, ALT-F3 to session 3, and so
on. A lot easier than typing session 1, session 2, etc.

The keyboard mappings keys defined in this book save a lot of time and
typing, and make NOS much easier to drive. Obviously you are free to
change them to anything you like, but it’s recommended that you stay
with the mappings defined here, at least until you’ve finished reading
this book!

106 Hands On — Session Manager © @

Some more Filesystem Commands
Let’s try a few more miscellanous commands to get our bearings:

cd: By itself, cd tells you the current DOS directory. At NOS startup
this is /dump/record, set at the very end of autoexec.nos. The
command pwd (“print working directory”) does the same thing.

To change to a different directory, it’s almost like DOS; e.g.
cd /spool/help. Note however that cd.. (without a space after cd)
doesn’t work; you need to give the ¢d .. command (with a space
before the two dots) to go up a directory level.

dir: You can use the dir command by itself to get a directory listing
of the current directory, or with a directory path; e.g.

net> dir /spool
help/ 8:05 8/13/92 mail.log 77 10:16 8/13/%92
mail/ 8:05 8/13/92 maueue/ 8:05 8/13/92

news/ 8:05 8/13/92 rgueue/ B:06 8/13/92
signatur/ 8:05 8/13/92
7 files, 4,669,440 bytes free. Disk size 41,246,720 bytes.

Resetting the TNC

You may wish to switch the tnc back to native mode, either because
you have finished with NOS, or because the tnc seems to have locked
up and is not responding as expected — Fig 13.4. The basic NOS
command to do this is param tnc0 255 (some tncs may require
param tnc0 254 as well).

The key combination CTRL-F1 takes this a step further. The keyboard
mapping file (fkeys.scr) shows that CTRL-F1 runs the script
tncreset.scr. This gives the param command to switch the tnc back to
native mode, then calls the dialer script fncreser.dia (see pages 329-330
for listings of these files).

The dialer script resets the tnc, then, after autobauding with the
asterisks, gives the XMITOK OFF command to disable the
transmitter.

©®® Hands On — Session Manager 107

Try CTRL-F1 to verify that you can reset the tnc. Then, to switch it
back into KISS mode again, you can use SHIFT-F1, which calls the
kisson.dia script described earlier.

Switch tnc back to
native mode
send RESET
sgr}d LIl
wait cmd: < cma:
send XMIT OFF
'_______/

ni 28]

Fig 13-4: The NOS command param tnc0 255 switches the tnc
from KISS mode back to native mode. The tncreset.dia dialer
script then resets the tnc and disables the PTT line.

Talking Direct to the TNC in Native Mode

If you want to communicate directly with the tnc in native mode, you
can use the tip (Terminal Interface Program) command — sec Fig
13-5,

You must first reset the tnc to native mode (for example, with
CTRL-F1), then give the command:

ﬂ net> tip tncO !

er ©6

This clears the screen and starts a new session. Hit CR a couple of
times, and you should see the cmd: prompt appear. From now on you
can talk to the tnc just like you used to!

Note than when you are running a tip session, you cannot run TCP/IP
at the same time — tip lets you talk in native mode to the tnc, whereas
TCP/TP requires KISS mode access to the tnc.

To exit the tip session, you simply escape to the Session Manager, then
give the reset command. Then you can give the SHIFT-F1 command
again, to put the tnc back into KISS mode.

ni29 |

Fig 13-5: The fip command lets you communicate direct with the
tnc in native mode. It is not possible to run TCP/IP at the same
time.

The Next Step

If you’ve successfully navigated this chapter, you are now ready to get
to know the NOS command set.

109

14: THE NOS COMMAND SET SUMMARY

NOS has over 80 separate commands, and getting your mind around
them is not a 5-minute job! Also, most of the commands have several
options, complicating matters even further. This chapter puts the
commands into logical groups, and provides a brief description of each
one. In later chapters we will look at most of them again in much more
detail. (See Appendix 2 for full command syntax information).

Session Manager Commands

? (or help) lists the main command names
F10 (or ESC) returns you to the Session Manager net> prompt
attended defines whether station is attended

cls clears the screen

dump displays memory contents

escape defines the Session Manager escape character
exit exits from NOS back to DOS

fkey defines function keys and cursor control keys
info displays NOS release infor