
1

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

��������	
����

�
�
�
�
�

�
�
�
	
�

����
����

��	

	��

����

�

����

���

INTRODUCTION TO THE

PICAXE SYSTEM

A PIC microcontroller is often

described as a ‘computer-on-a-chip’.

It is an integrated circuit that contains

memory, processing units, and input/output

circuitry in a single unit.

Microcontrollers are purchased ‘blank’ and then programmed with a specific control

program. Once programmed the microcontroller is build into a product to make the

product more intelligent and easier to use.

As an example, a microwave oven may use a single microcontroller to

process information from the keypad, display user information on

the seven segment display, and control the output devices

(turntable motor, light, bell and magnetron).

One microcontroller can often replace a number of

separate parts, or even a complete electronic circuit.

Some of the advantages of using microcontrollers in a

product design are:

• increased reliability through a smaller part count

• reduced stock levels, as one microcontroller replaces

several parts

• simplified product assembly and smaller end products

• greater product flexibility and adaptability since features are programmed

into the microcontroller and not built into the electronic hardware

• rapid product changes or development by changing the program and not the

electronic hardware

Applications that use microcontrollers include household appliances, alarm systems,

medical equipment, vehicle subsystems, and electronic instrumentation. Some modern

cars contain over thirty microcontrollers - used in a range of subsystems from engine

management to remote locking!

In industry microcontrollers are usually programmed using the assembler or ‘C’

programming languages. However the complexity of these languages means that it is not

realistic for younger students to be able to successfully use these languages within KS3 or

4 coursework.

2

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

THE PICAXE SYSTEM

The ‘PICAXE’ system is an easy-to-program microcontroller system that uses a simple

BASIC language, which most students can learn very quickly. The PICAXE system

exploits the unique characteristics of the new generation of low-cost ‘FLASH’ memory

based microcontrollers. These microcontrollers can be programmed over and over again

without the need for an expensive PIC programmer.

The power of the PICAXE system is its simplicity. No programmer, eraser

or complicated electronic system is required - the microcontroller is programmed (with a

simple ‘BASIC’ program or flowchart) via a 3-wire connection to the computers serial

port. The operational PICAXE circuit uses just 3 components and can be easily

constructed on a prototyping breadboard, strip-board or PCB design.

The main features of the PICAXE system are as follows:

• low-cost, simple to construct circuit

• multiple inputs, outputs and analogue channels

• rapid download via USB cable

• free, easy to use Programming Editor software

• simple to learn BASIC language

• extensive free manuals and online support forum

��
���

������
����

�

�

�

�

�

�

�

�

�

�	
�

����

������
���

�

��

���
��

�����

3

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 1 – THE PICAXE SYSTEM

The PICAXE system consists of three main components:

The ‘Programming Editor’ software

This software runs on a computer and allows you to use the computer keyboard to type

in programs in a simple BASIC language. Programs can also be generated by drawing

flowcharts. Alternately the ‘Logicator’ software may be used to simulate complete

electronic circuits, programmed via flowcharts.

The AXE027 USB Cable

This is the cable that connects the computer to the PICAXE system. The cable only

needs to be connected when downloading programs. It does not have to be connected

when the PICAXE is running because the program is permanently stored on the

PICAXE chip – even when the power supply is removed!

Power Supply

Use battery packs (3xAA cell = 4.5V is

recommended) or a regulated 5V DC power

supply only.

The PICAXE chip and board

The PICAXE microcontroller chip ‘runs’

program that have been downloaded to it.

However the chip needs to be mounted on

an electronic board that provide connection

to the microcontroller chip.

The electronic board can be designed by the

user on a piece of stripboard or printed

circuit board, or a pre-made interface or tutorial board may be used for speed and

convenience. This course presumes use of a PICAXE-18M2 (18 pin) microcontroller

mounted on the tutorial board.

Summary - Programming Procedure

1. Write the program on the computer using the Programming Editor software.

2. Connect the download cable from the computer to the PICAXE.

3. Connect the battery pack to the PICAXE.

4. Use the Programming Editor software to download the program. The download

cable can then be removed after the download.

The program will start running on the PICAXE automatically. However the program can

also be restarted at any time by pressing the reset switch.

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

�

�

�

�

�

�

�

�

 !"
�#�$�

%&'()
��

4

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

PICAXE-18 Boards

Three main types of PICAXE18 project / tutorial boards are available

Tutorial Board (AXE049)

This is a tutorial board containing switches, sensors, a seven segment display and

output drivers. This is the board described in these notes.

Standard Project Board (CHI030)

This is a project board that provides 8 digital (on/off) outputs via a darlington driver

IC.

High Power Project Board (CHI035)

This is a project that provides 4 digital outputs (via FET drivers) and 2 reversible motor

outputs.

���

�

�

�

�

#

�

�

�

�

���

�

�

$

#

�

�

�

�

�

� ��� � ���

���

*+,+ -.

*+,+ -�

�

�

�

�

�

���

�

�

�

�

#

�

�

�

�

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

�

�

�

�

�

�

�

�

 !"
�#�$�

%&'()
��

5

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Preparing the Tutorial Board

As supplied new, the tutorial board requires the battery clip to be connected before

use.

Battery Box
Locate the battery clip, and fold the bare wire back over the insulation on each wire.

Place the red wire in the socket marked ‘V+’ and the black wire in the socket marked

‘0V’. Tighten the screw so that the insulation and bare wire are both trapped in the

socket – this provides a stronger joint than just trapping the bare wire.

Always use the 4.5V battery box (3 AA cells required) with the tutorial board. DO NOT

use a 9V PP3 battery.

Solder Resist
The tutorial board is manufactured using a wave soldering technique. To prevent solder

sticking to the spare holes (for optional components) a ‘peelable solder resist’ layer is

printed on the base of the board. This peelable resist must be peeled off before the

optional components may be soldered in place.

6

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Downloading a Sample Program

The following program switches output 7 on and off every second. When you

download this program the decimal point on the seven segment display on the

tutorial board should flash on and off every second.

main:

high B.7

pause 1000

low B.7

pause 1000

goto main

This program uses the high and low commands to control output pin 7, and uses the

pause command to make a delay (1000 ms = 1 second).

The last goto main command makes the program ‘jump’ back to the label main: at the

start of the program. This means the program loops forever. Note that the first time the

label is used it must be followed by the colon (:) symbol. This tells the computer the

word is a new label.

Detailed instructions:

1. Connect the PICAXE cable to the computer serial port. Note which port it is

connected to.

1. Start the Programming Editor software.

2. Select View>Options to select the Options screen (this may automatically appear).

3. Click on the ‘Mode’ tab and select PICAXE-18M2

4. Click on the ‘Serial Port’ tab and select the serial port that the PICAXE cable is

connected to. Click ‘OK’

5. Type in the following program:

main:

high B.7

pause 1000

low B.7

pause 1000

goto main

(NB note the colon (:) directly after the label ‘main’ and the spaces between the

commands and numbers)

6. Make sure the PICAXE circuit is connected to the serial cable, and that the batteries

are connected (4.5V recommended).

7. Select PICAXE>Run. A download bar should appear as the program downloads.

When the download is complete the program should start running automatically –

the decimal point LED on output 7 should flash on and off every second.

7

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Windows Software Instructions

Toolbar short-cuts:

To download/run a program:
1. Check the download cable is connected to the PICAXE and the computer’s serial

port

2. Check that the power supply / battery is connected to the PICAXE

3. Make sure the Programming Editor software is in the correct mode (look for

‘PICAXE-18’ in the statusbar at the bottom left of the screen).

4. Click Run (or the toolbar icon)

To save a program:
1. Click File - Save As... (or the toolbar icon)

2. Type in a filename

3. Click <OK>

To open a saved program:
1. Click File - Open... (or the toolbar icon)

2. Select a filename from the list by clicking on it

3. Click <OK>

To start a new program:
1. Click File - New

To print a program:
1. Click File - Print... (or the toolbar icon)

2. If you want each program line printed to have a number, make sure the ‘Print Line

Numbers’ box is checked

3. Click <OK>

8

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 2 - USING SYMBOLS

Sometimes it can be hard to remember which pins are connected to which devices. The

‘symbol’ command can then be used at the start of a program to rename the inputs and

outputs. Note this program assumes connection of an external buzzer to output pin 1.

symbol dp = 7 ‘ rename output7 ‘dp’ (decimal point)

symbol buzzer = 1 ‘ rename output1 ‘buzzer’

main: ‘ make a label called ‘main’

high dp ‘ LED on

low buzzer ‘ buzzer off

wait 1 ‘ wait 1 second

low dp ‘ LED off

high buzzer ‘ buzzer on

wait 1 ‘ wait 1 second

goto main ‘ jump back to the start

Remember that comments (an explanation after the apostrophe (‘) symbol) can make

each line of a program much easier to understand. These comments are ignored by the

computer when it downloads a program to the PICAXE

A label (e.g. main: in the program above) can be any word (apart from keywords such as

‘switch’), but must begin with a letter. When the label is first defined it must end with a

colon (:). The colon ‘tells’ the computer that the word is a new label.

This program uses the wait command. The commands wait and pause both create time

delays. However wait can only be used with whole seconds, pause can be used for

shorter time delays (measured in milliseconds (1000th of a second)).

Wait can be followed by a number between 1 and 65.

Pause can be followed by a number between 1 and 65535.

It is also a good programming technique to use tabs (or spaces) at the start of lines

without labels so that all the commands are neatly aligned. The term ‘white-space’ is
used by programmers to define tabs, spaces and blank lines, and the correct use of white-

space can make the program listing much easier to read and understand.

Note:
Some early BASIC languages used ‘line numbers’ rather than labels for ‘goto’

commands. Unfortunately this line number system can be inconvenient to use, because

if you modify your program by later adding, or removing, lines of code you then have to

modify all the line numbers within the ‘goto’ commands accordingly. The label system,

as used in most modern BASIC languages, overcomes this problem automatically.

9

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

The ‘brain’ of the PICAXE system is the 18 pin PICAXE18M2 microcontroller. Although

microcontrollers are relatively cheap (some microcontrollers cost less than £1)

microcontrollers are very complex devices containing many thousands of transistors,

resistors and other electronic components.

The PICAXE microcontroller stores it’s program in non-volatile FLASH memory. This

means it does not loose the program when the power is removed from the circuit – when

the battery is re-connected the program will start again. However when you wish to

reprogram the PICAXE a new program can be downloaded – this erases the old program

and writes the new program into the memory. Only one program can be in memory at

one time.

Note that is not possible to ‘read’ the program back out of the PICAXE memeory.

Therefore you must save the program on the computer (before it is downloaded) if you

wish to keep your program to use in the future.

Aswell as the program ROM memory (Read Only Memory) the microcontroller also

contains temporary RAM (Random Access memory).

RAM (Random Access Memory) is ‘temporary’ memory used for storing information

whilst the program is running. This is normally used to store answers to mathematical

‘sums’ the microcontroller carries out as it is working. This memory is ‘volatile’, which

means that as soon as the power is disconnected the contents of the memory is lost.

There are 28 bytes of temporary memory that can be used within programs, and these

are labelled b0 to b27 within programs.

10

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

The PICAXE-18 Circuit

The basic PICAXE-18 circuit is shown below.

The 4k7 resistor is used to pull the PICAXE microcontrollers reset pin (pin 4) high. If

desired, a reset switch can also be connected between the reset pin (pin 4) and 0V. When

the switch is pushed the PICAXE microcontroller ‘resets’ to the first line in the program.

The PICAXE-18M2 microcontroller

Please note that the PICAXE microcontroller is not a blank microcontroller! The

PICAXE microcontroller is pre-programmed with a bootstrap program that enables the

direct cable download. Blank microcontrollers will not contain this bootstrap program

and so cannot be programmed from within the PICAXE system

�
�

�
�

�
��

/

�

�

�

#

$

�

�

/

0

#)�

 !1!,

$�

��

1! 2'&-+3,

1! 2'&-24
��)

��)

�
�
�

�
�
�

�/

��

��

�$

�#

��

��

��

��

24-�

+3,-�

+3,-�

+3,-�

+3,-�

24-�

24-�

24-�

24-�

+3,-�

+3,-�

+3,-$

+3,-#

� � �

11

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

The PICAXE computer interface circuit

The PICAXE system uses a very simple interface to the computer serial port. Although

this interface does not use true RS232 voltages, it is very low-cost and has proved to work

reliably on almost all modern computers.

It is strongly recommended that this interfacing circuit is included on every PCB

designed to be used with the PICAXE microcontroller. This enables the PICAXE

microcontroller to be re-programmed without removing from the PCB.

Note:
Most modern computers have two serial ports, normally labelled COM1 and COM2. The

Programming Editor software must be configured for the correct port – select

View>Options>Serial Port to select the correct serial port for your machine.

��
���

1! 2'&-+3,-�-524-�
1! 2'&-24-�-524-�
��-�-524-$��)

��)

�
�
�

�
�
�

� � �

12

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 3 - FOR…NEXT LOOPS

It is often useful to repeat the same part of a program a number of times, for instance

when flashing a LED. In these cases a for…next loop can be used.

This program flashes the LED connected to output pin 7 on and off 15 times. The

number of times the code has been repeated is stored in the RAM memory of the

PICAXE chip using variable b0 (the PICAXE contains 14 general purpose byte variables

labelled b0 to b13). These variables can also be renamed using the symbol command to

make them easier to remember.

symbol counter = b0 ‘ define the variable “counter”

symbol dp = B.7 ‘ define pin B.7 with the name “dp”

main: for counter = 1 to 15 ‘ start a for...next loop

 high dp ‘ switch pin 7 high

 pause 500 ‘ wait for 0.5 second

 low dp ‘ switch pin 7 low

 pause 500 ‘ wait for 0.5 second

next counter ‘ end of for...next loop

end ‘ end program

Note again how white-space (extra spaces) has been used to clearly show all the

commands that are contained between the for and next commands.

13

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

1+&' -*+,+

�

�

�

�

�

�

�

�

Controlling the speed of a motor

As the PICAXE system operates very quickly, it is possible to control the speed of motors

by switching them on and off very quickly. This type of control is known as Pulse Width

Modulation (PWM). PWM is a good control technique because it allows the motors to

work at a low speed whilst still maintaining a high torque (“turning force”). PWM is

often used, for instance to control the speed of an electric drill or screwdriver. For PWM

to work correctly you need a high quality motor. These programs are designed for a

‘solar’ motor and may not work correctly with a cheap toy motor.

symbol mark1 = b6 ‘ rename variables - easier to remember

symbol space1 = b7

symbol mark2 = b8

symbol space2 = b9

let mark1 = 2 ‘ preload mark1 / space1 with ratio 2:10 (1:5)

let space1 = 10

let mark2 = 20 ‘ preload mark2 / space2 with ratio 20:10 (2:1)

let space2 = 10

main:

for b2 = 1 to 200 ‘ start a for...next loop

 high B.0 ‘ motor on

 pause mark1 ‘ wait mark1 time

 low B.0 ‘ motor off

 pause space1 ‘ wait space1 time

next b2 ‘ next loop

pause 2000 ‘ stop motor for 2 seconds

for b2 = 1 to 200 ‘ start a for...next loop

 high B.0 ‘ motor on

 pause mark2 ‘ wait mark2 time

 low B.0 ‘ motor off

 pause space2 ‘ wait space2 time

next b2 ‘ next loop

pause 2000 ‘ stop motor for 2 seconds

goto main

14

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 4 - BUZZERS AND PIEZO-SOUNDERS

Buzzers will make a noise when they are connected to a power supply. This noise is

usually ‘fixed’ at one frequency and so buzzers can only make one ‘tone’. Piezo-sounders

use a different type of system to create noises, and can be used to create noises of

different tones by providing them with a ‘pulsed’ output.

The PICAXE system can automatically create noises of different frequencies by use of the

sound command.

main:

sound 6,(50,100) ‘ make a sound on 6, freq 50, length 100

sound 6,(100,100) ‘ make a sound on 6, freq 100, length 100

sound 6,(120,100) ‘ make a sound on 6, freq 120, length 100

pause 1000 ‘ wait 1 second

goto main ‘ loop back to start

To test this program you must add a piezo sounder (not supplied, part number SPE002)

to the tutorial board. To do this solder the red wire to the hole marked ‘+’ and the black

wire to the hole marked ‘-‘ under the word PIEZO in the centre of the board.

The first number provides the pin number (on the tutorial board output pin 6 is used).

The next number is the tone, followed by the duration. The higher the tone number the

higher pitch the sound (note that some sounders cannot produce very high tones and so

number greater than 127 may not be heard).

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

%366!
 !"-7�8

%&'()-7�8

�

�

�

�

�

�

�

�

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

 !"-7�8

%&'()-7�8

�

�

�

�

�

�

�

�

15

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

The following program uses a for…next loop to produce 120 different sounds.

main:

for b0 = 1 to 120 ‘ start a for...next loop

 sound B.6,(b0,50) ‘ make a sound , freq value from b0

next b0 ‘ next loop

end

The number stored in variable b0 increase by 1 in every loop (1-2-3 etc.) Therefore by

using the variable name b0 in the tone position, the note can be changed on each loop.

The following program does the same task but backwards.

main:

for b0 = 120 to 1 step -1 ‘ start a for...next loop

‘ (counting down)

 sound B.6,(b0,50) ‘ make a sound freq value from b0

next b0 ‘ next loop

end

This next program will give out all 256 possible sounds

main:

sound B.6,(b0,50) ‘ make a sound

let b0 = b0 + 1 ‘ add 1 to the varaible value

goto main ‘ loop again

In this case the program loops forever. However it is important to understand how the

PICAXE performs mathematics.

The PICAXE only understands byte numbers, that is whole numbers between 0 and 255.

It cannot understand fractions and cannot work with negative numbers or numbers

bigger than 255. Therefore if you try to add one to 255 the number will overflow back to

0. Therefore, in the program above, the value in variable b0 will go 252-253-254-255-0-

1-2 etc. as the program loops.

16

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

��

$�

�2*!

�
+&

,'
9!

TUTORIAL 5 – USING INPUTS

Digital Sensors

A digital sensor is a simple ‘switch’ type sensor that can only be ‘on’ or ‘off’.

Common examples of a digital sensor are:

• microswitches

• push and rocker switches

• reed switches

The tutorial board has two push switches connected to inputs 6 and 7. Another two

switches can be connected to the input positions 0 and 1 if desired.

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

"292,'&
1:2,(;

�

�

�

�

�

�

�

�

17

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

��

$�

�2*!

�
+&

,'
9!

"')

&29;,

This program below shows how to react to switch pushes . In this program output pin

7 flashes every time the push switch on input pin 6 is pushed.

main: ‘ make a label called ‘main’

if pinC.6 = 1 then flash‘ jump if the input is on

goto main ‘ else loop back around

flash: ‘ make a label called ‘flash’

high B.7 ‘ switch output 7 on

pause 2000 ‘ wait 2 seconds

low B.7 ‘ switch output 7 off

goto main ‘ jump back to start

In this program the first three lines make up a continuous loop. If the input is off the

program just loops around time and time again.

If the switch is then pushed the program jumps to the label called ‘flash’. The program

then flashes output 7 on for two seconds before returning to the main loop.

Note carefully the spelling in the if…then line – pinC.6 is all one word (without a

space). Note also that only the label is placed after the command then – no other

words apart from a label are allowed.

Analogue Sensors

An analogue sensor measures a continuous signal such as light, temperature or position.

The analogue sensor provides a varying voltage signal. This voltage signal can be

represented by a number in the range 0 and 255 (e.g. very dark = 0, bright light = 255).

Common examples of analogue sensors are:

• LDR (Light Dependant Resistor)

• Thermistor

• Variable Resistor (potentiometer)

The tutorial board has an LDR mounted on the board, connected to input 2.

18

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Light Dependent Resistor (LDR)
The LDR is a component whose resistance depends on the amount of light falling on

it. It’s resistance changes with light level. In bright light its resistance is low (typically

around 1k). In darkness its resistance is high (typically around 1M).

The circuit symbol and a graph showing the resistance in various light levels are shown

below:

The LDR sensor is connected to input 2 in a potential divider arrangement.

�7�8

�29;,-24,!412,<
7�3=8

"') &29;,

�	�

��)

19

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Reading Analogue Input Channels

The value of an analogue input can be easily copied into a variable by use of the

‘readadc’ command. The variable value (0 to 160) can then be tested. The following

program switches on one LED if the value is greater than 120 and a different LED if the

value is less than 70. If the value is between 70 and 120 both LEDS are switched off.

main: ‘ make a label called ‚main

readadc C.2,b0 ‘ read channel 2 into variable b0

if b0 > 120 then top ‘ if b0 > 120 then do top

if b0 < 70 then bot ‘ if b0 < 70 then do bot

low B.1 ‘ else switch off 1

low B.2 ‘ and switch off 2

goto main ‘ jump back to the start

top: ‘ make a label

high B.1 ‘ switch on 1

low B.2 ‘ switch off 2

goto main ‘ jump back to start

bot: ‘ make a label

high B.2 ‘ switch on 2

low B.1 ‘ switch off 1

goto main ‘ jump back to start

Note that the PICAXE-18M2 microcontroller has 3 analogue channels labeled 0 to 2.

On the tutorial board the LDR is connected to pin2 permanently, but you connect

another sensor to inputs 0 or 1.

When using analogue sensors it is often necessary to calculate the ‘threshold’ value

necessary for the program (ie the values 100 and 150 in the program above). The

debug command provides an easy way to see the ‘real-time’ value of a sensor, so that

the threshold value can be calculated by experimentation.

main: ‘ make a label called main

readadc C.2,b0 ‘ read channel 2 into variable b0

debug b0 ‘ transmit value to computer screen

pause 100 ‘ short delay

goto main ‘ jump back to the start

After this program is run a ‘debug’ window showing the value of variable b0 will

appear on the computer screen. As the sensor is experimented with the variable value

will show the current sensor reading.

20

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 6 – DRAWING FLOWCHARTS

Flowcharts are a useful tool that allows programs to be represented graphically to make

them easier to understand. The Programming Editor software includes a flowchart editor

that allows flowcharts to be drawn on screen. These flowcharts can then be converted to

BASIC listings for download into the PICAXE. The flowcharts can also be printed or

exported as graphics files for inclusion within project portfolios.

Detailed instructions:

1. Connect the PICAXE cable to the computer serial port. Note which port it is

connected to (normally labelled COM1 or COM2).

2. Start the Programming Editor software.

3. Select View>Options to select the Options screen (this may automatically appear).

4. Click on the ‘Mode’ tab and select PICAXE-18

5. Click on the ‘Serial Port’ tab and select the serial port that the PICAXE cable is

connected to. Click ‘OK’

6. Start a new flowchart by clicking the File>New Flowchart menu.

7. Draw the flowchart shown below by dragging the correct symbols onto the screen,

and then using the mouse to draw arrows between the symbols.

8. Once the flowchart is complete it can be converted into a BASIC program by

selecting Flowchart>Convert Flowchart to BASIC. The BASIC program can then be

downloaded to the PICAXE as normal.

9. To print or save the flowchart, use the File menu as normal. To export the flowchart

as a graphic file, use the File>Export menu. To publish the image in a Word

document select file type EMF. To publish the flowchart on an internet web page use

the GIF file type.

21

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

The Flowchart Editor allows flowcharts to be drawn and simulated on-screen. The

flowchart can then be automatically converted into a BASIC program for downloading

into the microcontroller.

Flowchart Screen

Select Tool
Use this to select and move shapes. When a single shape is selected it’s BASIC code can

be edited in the edit bar at the bottom of the window.

Zoom
Use to zoom in to an area of the graph. Right click to zoom out.

Zoom In/Out
To zoom in click and move the mouse up. To zoom out click and move the mouse down.

Pan
Use this tool to move around the flowchart.

Select Zoom Zoom In/Out Pan Line Out If Delay Sub Other

edit bar

22

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Line Tool
Use this tool to draw lines between shapes. Corners can be added by clicking once. When

the line is near to a shape it will ‘snap’ to the connection point.

Label Tool
Use this tool to add descriptive labels or titles to the flowchart.

Out / If / Delay / Sub / Other
Click on these buttons to move to the command sub-menu to select commands.

Drawing Flowcharts

To draw a flowchart click on one of the command menu buttons (out / if / delay / sub /

other) on the toolbar to move to the appropriate command sub-menu. Select the

appropriate command and then click on the screen where the shape is required. Do not

try to locate the shape precisely at first – just drop it in the general area and then use the

select tool to move the shape to the correct position.

Once the shape is in position click on it so that it is highlighted. The BASIC code for the

shape will then appear in the edit bar at the bottom of the screen. Edit the code as

required.

For further information about each command see the ‘BASIC Commands’ help file. Note

that some unique commands (e.g. servo for the PICAXE28) will only appear when the

software is in the appropriate mode (View>Options menu).

Joining Shapes

Shapes are joined by moving them close together until they ‘snap’ together. Alternately

lines can be drawn between the shapes using the ‘line tool’ from the main toolbar. Note

that it is only possible to join the bottom (side) of shapes to the top of other shapes.

Only one line is allowed out of the bottom of each shape.

To enable neat diagrams, comers to the lines can be added by clicking with the mouse.

When a line moves close to a connection point it will snap into position and then a click

will finish the line.

Lines cannot be moved. If you try to move a line it will be deleted and a new line must

be created.

23

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

On Screen Simulation

To simulate the flowchart, click ‘Simulate’ from the Flowchart menu. The program will

then start to run on-screen.

As the program runs each cell is highlighted red as it is carried out. The ‘Inputs/Outputs’

and ‘Variables’ windows also appear when a simulation is being carried out. To adjust

the input values click the on-screen switch or slide the analogue input slider.

The time delay between shapes can be adjusted via the Flowchart options

(View>Options>Flowchart menu).

Note that certain commands have no on-screen simulation equivalent feature. In this

case the command is simply ignored as the flowchart runs.

24

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Downloading Flowcharts

Flowcharts are not directly downloaded to the microcontroller. First the flowchart is

converted into a BASIC program, which is then downloaded.

To convert a program select ‘Convert’ from the Flowchart menu. The BASIC program for

downloading will then be created.

Shapes that are not connected to the ‘start’ or ‘sub’ shapes in the flowchart are ignored

when the conversion takes place. The conversion will stop if an unconnected shape is

found. Therefore always use a ‘stop’ shape or line to complete the flowchart before

simulation or conversion.

Note that it is possible to quickly convert and then download a flowchart by pressing the

shortcut key <F5> twice.

Using Symbols

Inputs, Outputs and Variables can all be renamed using the ‘Symbol Table’ from the

Flowchart menu. When a symbol is renamed the new name appears in the drop-down

menus on the edit bar. Note that you should not use commands (e.g. switch or sound) as

a symbol as this will generate errors in your converted BASIC program.

Saving and Printing Flowcharts

Flowcharts can be saved, printed and exported as graphic files (for adding to word

processor documents) via the File menu. Flowcharts can also be copied to the Windows

clipboard (for pasting into other applications) via the Edit menu.

25

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 7 - NUMBER SYSTEMS

A microcontroller operates by performing a large number of commands in a very short

space of time by processing electronic signals. These signals are coded in the binary

system – the signal either being high (1) and low (0)

The counting system used in everyday activities is the decimal system. This number

system uses the ten familiar digits 0 to 9 to explain how big or small the number is.

However when working with microcontrollers it is sometimes easier to work in binary.

This is especially true when trying to control multiple outputs at the same time.

A single binary digit is referred to a bit (binary digit). The PICAXE systems use 8 bits (1

byte), with the least significant bit (LBS) on the right hand side and the most significant

bit (MSB), on the left hand side.

Therefore the binary number %11001000 means set bits 7,6,3 high (1) and the others

low (0). The % sign tells the computer you are working in binary instead of decimal.

This means you can control all 8 outputs at the same time, instead of just using the high

and low commands. The following program demonstrates how to make the seven

segment display on the tutorial board count from 0 to 9.

let dirsB = %11111111 ‘ make portB outputs

main:

let pinsB = %00111111 ‘ digit 0

pause 250 ‘ wait 0.25 second

let pinsB = %00000110 ‘ digit 1

pause 250 ‘ wait 0.25 second

let pinsB = %01011011 ‘ digit 2

pause 250 ‘ wait 0.25 second

let pinsB = %01001111 ‘ digit 3

pause 250 ‘ wait 0.25 second

let pinsB = %01100110 ‘ digit 4

pause 250 ‘ wait 0.25 second

let pinsB = %01101101 ‘ digit 5

pause 250 ‘ wait 0.25 second

let pinsB = %01111101 ‘ digit 6

pause 250 ‘ wait 0.25 second

let pinsB = %00000111 ‘ digit 7

pause 250 ‘ wait 0.25 second

let pinsB = %01111111 ‘ digit 8

pause 250 ‘ wait 0.25 second

let pinsB = %01101111 ‘ digit 9

pause 250 ‘ wait 0.25 second

goto main

Each ‘let pins=’ line changes the number of bars that are lit on the seven segment display.

This is quicker than using lots of ‘high’ and ‘low’ commands.

26

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Displaying Analogue Values on the Seven Segment Display

This program reads the light value from the LDR sensor on input 2 and then displays a

value digit on the seven segment display.

let dirsB = %11111111 ‘ make portB outputs

main: readadc C.2,b1 ‘ read analogue pin 2 into variable b1

if b1 > 150 then show9 ‘ test variable b1 value and jump

if b1 > 130 then show8

if b1 > 110 then show7

if b1 > 90 then show6

if b1 > 70 then show5

if b1 > 50 then show4

if b1 > 30 then show3

if b1 > 20 then show2

if b1 > 10 then show1

show0:

let pinsB = %00111111 ‘ digit 0

goto main

show1:

let pinsB = %00000110 ‘ digit 1

goto main

show2:

let pinsB = %01011011 ‘ digit 2

goto main

show3:

let pinsB = %01001111 ‘ digit 3

goto main

show4:

let pinsB = %01100110 ‘ digit 4

goto main

show5:

let pinsB = %01101101 ‘ digit 5

goto main

show6:

let pinsB = %01111101 ‘ digit 6

goto main

show7:

let pinsB = %00000111 ‘ digit 7

goto main

show8:

let pinsB = %01111111 ‘ digit 8

goto main

show9:

let pinsB = %01101111 ‘ digit 9

goto main

27

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Controlling Stepper Motors

Stepper motors are very accurate motors that are commonly used in computer disk

drives, printers, XY plotters and clocks. Unlike dc motors, which spin round freely when

power is applied, stepper motors require that their power supply is continuously ‘pulsed’

in four different patterns. For each pulse, the stepper motor moves around one ‘step’,

typically 7.5 degrees (giving 48 steps in a full revolution).

Stepper motors do have some limitations. First, the power consumption is greatest when

the stepper motor is stopped (as all coils are still energised). The speed of revolution is

also limited to around 100 steps per second, which provides a rotational speed of 2 rev /

s or 120 rev / min.

The stepper motor contains magnets which are fixed to the central armature. Four

electronic coils are located around the casing. When a current is passed through these

coils they generate a magnetic field, which attract/repels the permanent magnets on the

armature, and so the armature spins one ‘step’ until the magnetic fields align. The coils

are then energised in a different pattern to create a different magnetic field, and the

armature spins another step.

�
��

��
��

�

�

�

�

#

$

�

�

/

0

�0

��

��

�$

�#

��

��

��

��

����

1,!55!

�

�

�

�

�� ��

28

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

��
���
������
����

�

�

�

�

�

�

�

�

�

�	�

����

�
�

�
��

�
��

�
�

��

���

��

�����

�

�

�

�

�

�

�

�

<!&&+:

 !"

+ '49!

%&'()

% +:4

:;2,!

1,!55!
*+,+

To make the armature rotate continuously the four coils inside the stepper motor must

be switched on and off in a certain step order. The ULN2003A driver chip on the tutorial

board provides the method of interfacing these four coils.

The stepper motor should be connected to the

holes on the tutorial board as follows:

Black Wire 2 +

White Wire 3 +

Yellow Wire 0 –

Red Wire 1 –

Orange Wire 2 –

Brown wire 3 –

The table below show the four different steps required to make the motor turn

Step Coil 4 Coil 3 Coil 2 Coil 1
(Output 3) (Output 2) (Output 1) (Output 0)

 1 1 0 1 0

 2 1 0 0 1

 3 0 1 0 1

 4 0 1 1 0

 1 1 0 1 0

To make the motor spin the other way the steps are reversed (i.e. 4-3-2-1-4 etc. rather

than 1-2-3-4-1 etc.).

Note:

The wiring configuration of stepper motors varies from different manufacturers.

Therefore, it may be necessary to rearrange the coil connections for the above sequence

to operate correctly. An incorrect coil arrangement will result in the stepper motor

vibrating back and forth rather than rotating. Most stepper motors are designed to

work at 12V, but will generally work (with reduced torque) at 6V.

29

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

This program can also use a binary number that switches all of the output lines on and

off at the same time. The binary output number for each step is shown in the table

below:

Step Binary Output
 1 %00001010

 2 %00001001

 3 %00000101

 4 %00000110

 1 %00001010

Try changing the speed by altering the value of delay in the following program.

symbol delay = b0 ‘ define the variable

let delay = 100 ‘ set delay to 0.1s

let dirsB = %11111111 ‘ make portB outputs

main: let pinsB = %00001010 ‘ first step

pause delay ‘ pause for delay

let pinsB = %00001001 ‘ next step

pause delay ‘ pause for delay

let pinsB = %00000101 ‘ next step

pause delay ‘ pause for delay

let pinsB = %00000110 ‘ next step

pause delay ‘ pause for delay

goto main ‘ loop forever

30

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

TUTORIAL 8 - SUB-PROCEDURES

A sub-procedure is a separate ‘mini-program’ that can be called from the main program.

Once the sub-procedure has been carried out the main program continues.

Sub-procedures are often used to separate the program into small sections to make it

easier to understand. Sub-procedures that complete common tasks can also be copied

from program to program to save time.

The following program uses two sub-procedures to separate the two main sections of the

program(‘flash’ and ‘noise’).

symbol dp = B.7 ‘ rename output7 ‘dp’

symbol buzzer = B.6 ‘ rename output6 ‘buzzer’

symbol counter = b0 ‘ define a counter using variable b0

main: ‘ make a label called ‘main’

gosub flash ‘ call the sub-procedure flash

gosub noise ‘ call the sub-procedure noise

goto main ‘ loop back

end ‘ end of the main program

flash: ‘ make a sub-procedure called flash

for counter = 1 to 25 ‘ start a for…next loop

high dp ‘ LED on

pause 50 ‘ wait 0.05 second

low dp ‘ LED off

pause 50 ‘ wait 0.05 second

next counter ‘ next loop

return ‘ return from the sub-procedure

noise:

high buzzer ‘ buzzer on

pause 2000 ‘ wait 2 seconds

low buzzer ‘ buzzer off

return ‘ return from the sub-procedure

31

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

This second program shows how a variable can be used to transfer information into a

sub-procedure. In this case variable b2 is used to tell the microcontroller to flash 5, and

then 15, times.

symbol dp = B.7 ‘ rename output7 ‘dp’

symbol counter = b0 ‘ define a counter using variable b0

main: ‘ make a label called ‘main’

let b2 = 5 ‘ preload b2 with 5

gosub flash ‘ call the sub-procedure flash

pause 500 ‘ wait a while

let b2 = 15 ‘ preload b2 with 15

gosub flash ‘ call the sub-procedure flash

pause 500 ‘ wait a while

goto main ‘ loop back

end ‘ end of the main program

flash: ‘ make a sub-procedure called flash

for counter = 1 to b2 ‘ start a for…next loop

high dp ‘ LED on

pause 250 ‘ wait 0.25 second

low dp ‘ LED off

pause 250 ‘ wait 0.25 second

next counter ‘ next loop

return ‘ return from the sub-procedure

32

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

Where next?

By completing these tutorials you have learnt all the basics about the PICAXE system –

how to setup the system, how to develop programs, how to draw flowcharts and how to

connect input and output devices. On the CDROM there are also some other very useful

reference guides which will provide you with further information.

Further informatuion is available in the full PICAXE manual.

Exemplar Projects
The next reference point should be the exemplar projects, which give real life examples

of how the PICAXE system can be used in the real world. Each project provides a sample

circuit diagram and program listing, which may be copied or altered to meet your project

requirements.

PICAXE Manual - Part 2 - BASIC Command Guide
The BASIC language used by the PICAXE has over 30 commands, of which we have only

used a few in this tutorial. Have a look through the other commands available, each

command has a small program to demonstrate how it can be used within a project.

PICAXE Manual - Part 1 - Interfacing Electronics Guide
This guide explains how to ‘interface’ a large number of input and output devices to the

PICAXE microcontroller. If you want to know how to connect a buzzer, motor, solenoid

or LDR to the PICAXE, the answer is here!

Finally all the latest information, and a technical support forum, are available on the

internet at www.picaxe.com

GOOD LUCK WITH YOUR PICAXE PROJECT!

33

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

APPENDIX 1: EQUIPMENT REQUIRED

All equipment can be purchased from the online store at

www.techsupplies.co.uk

See the PICAXE section for details on the PICAXE parts.

Equipment Required for tutorials within this booklet:

PICAXE18M2 Tutorial Board Pack (AXE050U)

3 x AA batteries (BAT002)

Optional Connectors:

3 x 4pole screw terminal block (CON005)

Optional Output Devices:

SPE002 Piezo Sounder

GBX007 Solar DC Motor

GBX008 Unipolar Stepper Motor

34

INTRODUCTION TO THE PICAXE SYSTEM

revolution © copyright 2001-12 Revolution Education Lt v1.2 Web: www.picaxe.com

APPENDIX 2: CIRCUIT DIAGRAM

#
�

�/

�
�

��
��
��
��
0
/
�
�

����#0-��
�����/��-�3,+ 2'&-.+' "
#�$�

���

��

��

��

��

��

��	
��	

��

�! 2'&
�24)

��
.��
.��
.�$
.�#
.��
.��
.��
.��

��

$

�#

��� ������ ��� ������ ��� ���

�

��) $=
��)

��)

#)�

�

#
��
�/
�

�$
��

�
�

��
�

�

�
�

�

�
�

��
�

��
�

��
�$
�#
��
��
��
��

�4�
�4$
�4#
�4�
�4�
�4�
�4�

��

��

3,�

3,$

3,#

3,�

3,�

3,�

3,�

0

�
�
�
#
$
�
�

���

���

���

���

/ �
�
��������

��

#�$�

.��

.��

.��

.��

