
By Lewis F. McIntyre, KB6IC 
3711 Gayle Avenue 
Omaha, Nebraska 68123 

ERROR CORRECTION 
IN DATA 

TRANSMISSION 
Using Hamming codes to detect and 
correct errors in digital transmissions 

F communications techniques for 
hams have undergone a dramatic 
.change over the past ten years. 

Electro-mechanical ASRs have given way to 
computer terminals, and Baudot has lost 
some of its popularity to ASCII, AMTOR, 
and packet. Data rates have increased from 
the venerable 45 baud to 300. But a "quick" 
packet exchange under less than ideal condi- 
tions proves that error detection and correc- 
tion codes haven't kept up with these 
changes. In fact, packet and AMTOR use 
only error detection codes - requesting 
repeats when errors are found. AMTOR is 
effective, but slow. Under the best of condi- 
tions, its efficiency level is 50 percent. 
Packet, too, can quickly bog down on a 
noisy circuit because of its higher data rate. 

For ordinary chitchat, straight RTTY is 
hard to beat. It's too bad the computer can't 
"fill in the blanks" on a few hits the way a 
human operator can, or can it? 

Actually, your computer can fill in the 
blanks. Hamming codes, developed by Dr. 
Robert Hamming almost 40 years ago: let 
computers detect and correct errors in digi- 
tal transmissions. These codes are used in 
many applications. For instance, Hamming 
codes are used to ensure data integrity in 
the memory portion of the new VHSIC chips. 

I'd like to introduce you to some Hamming 
code basics, and share some look-up tables and 
ideas for future development. I'll also analyze 
how these codes might be used to improve 
packet and AMTOR link performance. 

How they work 
Hamming codes can correct single-bit 

transmission errors. The mathematical process 
involved is quite complicated, so I'll skip the 
theory for now and go directly to an example. 

Say you want to encode a four-bit data 
word into a seven-bit word called a "Hamming 
sequence." This is a 7/4 Hamming code 
(four data bits and three parity bits, for 
total of seven transmitted bits) which can 
correct single errors and detect two-bit 
errors in a received word. To see how this is 
done, pick a number between 0 and 15. Let's 
try 4. In Table 1, the encode table, find the 
number's Hex value (04H). Follow along the 
line to find the opposite value - 100 1100, 
or 4CH. This is the Hamming sequence 
you'll transmit. After you receive that 
sequence, decode it using Table 2 - the 
decode table. The answer is 04H. Now 
simulate noise by changing any one of the 
seven received bits to its opposite value. Try 
making the least significant bit (LSB) a 1. 
This makes the received sequence 100 1101, 
or  4DH. Look up this Hamming sequence 
in Table 2, and read the decoded value. 
You'll find it's still 04H. Change any other 
bit, and you'll still obtain the correct value, 
04H, from Table 2. 

Why? The answer is obvious if you look 
at the decode table (Table 2). This table is 
eight times larger than the encode table 
(Table I), because the decoded value of 04H 
(and all 15 other decoded answers) is decoded 
at eight entries. It's decoded once at the "no 
errors" entry of 100 1100 (marked with the 
asterisk), and seven times at 100 1101, 100 
1110, 100 1000, 100 0100, 101 1100, 110 1100, 
and 000 1100 (all of the seven single-bit 
error positions possible). 

88 November 1990 














