By Lewis F. McIntyre, KB6IC

3711 Gayle Avenue
Omaha, Nebraska 68123

88 November 1990

ERROR CORRECTION
TRANSMISSION

IN DATA

Using Hamming codes to detect and
correct errors in digital transmissions

F communications techniques for

hams have undergone a dramatic

change over the past ten years.
Electro-mechanical ASRs have given way to
computer terminals, and Baudot has lost
some of its popularity to ASCII, AMTOR,
and packet. Data rates have increased from
the venerable 45 baud to 300. But a “quick”
packet exchange under less than ideal condi-
tions proves that error detection and correc-
tion codes haven’t kept up with these
changes. In fact, packet and AMTOR use
only error detection codes — requesting
repeats when errors are found. AMTOR is
effective, but slow. Under the best of condi-
tions, its efficiency level is 50 percent.
Packet, too, can quickly bog down on a
noisy circuit because of its higher data rate.

For ordinary chitchat, straight RTTY is
hard to beat. It’s too bad the computer can’t
“fill in the blanks™ on a few hits the way a
human operator can, or can it?

Actually, your computer can fill in the
blanks. Hamming codes, developed by Dr.
Robert Hamming almost 40 years ago! let
computers detect and correct errors in digi-
tal transmissions. These codes are used in
many applications. For instance, Hamming
codes are used to ensure data integrity in
the memory portion of the new VHSIC chips.

I'd like to introduce you to some Hamming
code basics, and share some look-up tables and
ideas for future development, I’ll also analyze
how these codes might be used to improve
packet and AMTOR link performance.

How they work

Hamming codes can correct single-bit

transmission errors. The mathematical process
involved is quite complicated, so I'll skip the
theory for now and go directly to an example.

Say you want to encode a four-bit data
word into a seven-bit word called a “Hamming
sequence.” This is a 7/4 Hamming code
(four data bits and three parity bits, for
total of seven transmitted bits) which can
correct single errors and detect two-bit
errors in a received word. To see how this is
done, pick a number between 0 and 15. Let’s
try 4. In Table 1, the encode table, find the
number’s Hex value (04H). Follow along the
line to find the opposite value — 100 1100,
or 4CH. This is the Hamming sequence
you’ll transmit. After you receive that
sequence, decode it using Table 2 — the
decode table. The answer is 04H. Now
simulate noise by changing any one of the
seven received bits to its opposite value. Try
making the least significant bit (LSB) a 1.
This makes the received sequence 100 1101,
or 4DH. Look up this Hamming sequence
in Table 2, and read the decoded value.
You'll find it’s still 04H. Change any other
bit, and you’ll still obtain the correct value,
04H, from Table 2.

Why? The answer is obvious if you look
at the decode table (Table 2). This table is
eight times larger than the encode table
(Table 1), because the decoded value of 04H
(and all 15 other decoded answers) is decoded
at eight entries. It’s decoded once at the “no
errors” entry of 100 1100 (marked with the
asterisk), and seven times at 100 1101, 100
1110, 100 1000, 100 0100, 101 1100, 110 1100,
and 000 1100 (all of the seven single-bit
error positions possible).

Now change two bits. Make the sequence
100 1111. Your answer will be 07H, with
errors detected. Two-bit errors will always
give the wrong answer, but will never decode
as a “no errors” entry marked with an aster-
isk. Depending on the word, three or four
bits out of the seven sent would have to be
changed for that to happen.

It’s a bit harder to create a Hamming
sequence? When doing so, you need to get
into the mathematical part of the process.
But because it doesn’t really come into play
once a look-up table sequence has been
defined, I'll hold off on the theory once
again. At this point, I'd rather pique your
interest with some practical HF applications
for this encode/decode scheme.

Data
Word
00H
O1H
02H
03H
04H
05H
06H
07TH
08H
09H
0AH
0BH
OCH
O0DH
0EH
OFH

Encoded Hamming Sequence

Binary

000 0000
110 1001
010 1010
100 0011
100 1100
010 0101
110 0110
000 1111
111 0000
001 1001
101 1010
011 0011
o1l 1100
101 0101
001 0110
111 1111

HEX

(00H)
(69H)
(2AH)
(43H)
(4CH)
(25H)
(66H)
(OFH)
(70H)
(19H)
(5AH)
(33H)
(3CH)
(55H)
(16H)
(7FH)

Table 1. Encode table for 7/4 Hamming sequences.

Received Received

Hamming Data Hamming Data
Sequence Word Sequence Word
000 0000 00H* 010 0000 00H
000 0001 00H 010 0001 05H
000 0010 00H 010 0010 02H
000 0011 03H 010 0011 0BH
000 0100 00H 010 0100 05H
000 0101 05H 010 0101 05H*
000 0110 OEH 010 0110 06H
000 0111 07TH 010 0111 05H
000 1000 00H 010 1000 02H
000 1001 09H 010 1001 01H
000 1010 02H 010 1010 02H*
000 1011 07H 010 1011 02H
000 1100 04H 010 1100 0CH
000 1101 07H 010 1101 05H
000 1110 07H 010 I110 0ZH
000 1111 07H* 010 1111 07H
Received Received

Hamming Data Hamming Data
Sequence Word Sequence Word
001 0000 00H 011 0000 08H
001 0001 09H 011 0001 0BH
001 0010 0EH 011 0010 0BH
001 0011 0BH 011 0011 OBH*
001 0100 OEH 011 0100 0CH
001 0101 0DH 011 0101 05H
001 0110 OEH* 011 0110 0EH
001 0111 OEH 011 0111 0BH
001 1000 0SH 011 1000 0BH
001 1001 09H* 011 1001 09H
001 1010 0AH 011 1010 02H
001 1011 09H 011 1011 0BH
001 1100 OCH 011 1100 0CH*
001 1101 09H 011 1101 OCH
001 1110 0EH 011 1110 0CH
001 1111 07H 011 111 OFH

Received

Hamming

Sequence
100 0000
100 0001
100 0010
100 0011
100 0100
100 0101
100 0110
100 0111
100 1000
100 1001
100 1010
100 1011
100 1100
100 1101
100 1110
100 1111

Received

Hamming

Sequence
101 0000
101 0001
101 0010
101 001}
101 0100
101 0101
101 0110
101 0111

101
101
101
101
101
10t
101
101

1000
1001
1010
1011
1100
1101
1110
1111

Data

Word

00H
03H
03H

03H*

04H
0DH
06H
03H
04H
O1H
0AH
03H

04H*

04H
04H
07TH

Data

Word

08H

O0DH
0AH
03H

0DH
ODH
OEH
0DH
OAH
09H

0AH
0AH
04H

0DH
0AH
OFH

*

*

Received
Hamming
Sequence

110 0000
110 0001
110 0010
110 0011
10 0100
110 0101
110 0110
110 0111
110 1000
110 1001
110 1010
110 1011
110 1100
110 1101
110 1110
110 1111

Received
Hamming
Sequence
111 0000
111 0001
111 0010
111 0011
1 0100
111 0101
111 0110
111 0111
111 1000
111 1001
I 1010
111 1011
111 1100
111 1101
111 1110
1 1

Data
Word

08H
0lH
06H
03H
06H
05H
06H*
06H
OlH
OIH*
02H
OlH
04H
OlH
06H
OFH

Data
Word
08H*
08H
08H
0BH
08H
0DH
06H
O0FH
08H
01H
0AH
OFH
0CH
OFH
OFH
OFH*

Table 2. Decode table for 7/4 Hamming sequences. Asterisks indicate “no errors detected.” All other entries have single errors

detected.

Communications Quarterly 89

Implementing the Hamming
codes

Why, if they’re so easy to implement,
aren’t Hamming codes more popular? First,
there’s no agreed-upon protocol. Second,
the string of four data bits isn’t long
enough. The Baudot code uses five bits,
with extra characters (FIGS/LTRS) to shift
back and forth between two 32-character
alphabets. ASCII uses seven bits, and eight
are preferred to allow full data transfer.
Can’t you just break an ASCII word into
two four-bit “nibbles,” encode and send
each, then decode, correct, and add them
back up at the receiver?

In theory, you can. But you'll encounter
another HF error — fading. Fading causes
the entire loss, or “erasure,” of one or
several words. And, if the receiver was
expecting a LSB “nibble” when the fade
started, but picked up a most significant bit
(MSB) nibble when it ended, it would
assemble an incorrect word. Because the
receiver’s definition of MSB and LSB is
now out of sync, all subsequent words will
be reassembled incorrectly.

In manual systems like straight RTTY,
you could treat this problem the same way
you'd treat a FIGS/LTRS garble. You'd use
a key to direct the computer to shift the
order in which it’s reassembling the nibbles.

You could also devote one of the four bits
as a flag, indicating whether it’s an MSB or
LSB nibble. This would leave six bits —
enough to encode a 64-character alphabet
like Baudot.

VIRTUAL PATHS

THROUGH PHYSICAL LAYER
7. APPLICATION ﬁ 7. APPLICATION
6. PRESENTATION B -3 6. PRESENTATION
5. SESSION = & 5. SESSION
4. TRANSPORT e $ | 4. TRANSPORT
3. NETWORK £ > 3. NETWORK
N BYTES + N BYTES +
2. LINK o E - mp | 2. LINK Siaii
PROTOCOLS
1. PHYSICAL & & 1. PHYSICAL
[1BYTE 18YTE
B-BIT WORD 8-BIT WORD
MSB LsB | 2 BYTES x 7 BITS M5B LS8
HAMMING
el —pl COMMUNICATIONS MEDIUM | OECODE

90 November 1990

Figure 1. Hamming application to AX.25.

Packet applications

A third possibility would be to place the
Hamming codes inside an error-detecting
block code. You could send a block of a
fixed number of characters (say 127), com-
pute a checksum of each character, and then
send the checksum. The receiver would per-
form a similar process, acknowledging the
text if it agrees with the checksum, or ask-
ing for a repeat if it’s incorrect. This com-
mon algorithm for data transfer is used by
XMODEM for landline and in the link pro-
tocol in AX.25 packet.

The AX.25 packet protocol is organized
in “layers.” The link layer organizes a block,
computes checksums, determines if a block
is received correctly, and handles repeat
requests. The bottom-most layer is the phys-
ical layer. This layer is normally concerned
only with modulation and demodulation.
It’s at the physical layer that you'd intercept
a single eight-bit word on its way to the
modulator, encode it, and reverse the pro-
cess at the receiver. Figure 1 shows how you
could include Hamming encoding and
decoding at this level without disturbing any
of the other layers, except, perhaps, to allow
more time for the longer Hamming codes.
What do you gain by doing this?

The AX.25 protocol already accounts for
packets of incorrect length. Thus, erasures,
and the framing problems they may generate,
can be detected and handled by requests for
retransmission generated by the existing link
protocol. And, because the checksum is also
encoded as a Hamming sequence, errors
which can’t be corrected will probably be
detected as well, resulting in a retransmis-
sion request. You can do all of this without
touching the higher-order packet protocols.
In all probability, this scheme will correct
all single-bit errors per Hamming sequence,
and detect all erasures (incorrect packet length)
and uncorrectable errors (bad checksum).
How high is this probability? Let’s see.

Number crunching

The Bit Error Rate (BER) is the probability
that any bit will be changed. The basic
packet word is eight bits long, and each bit
must be correct. The probability of receiv-
ing an entirely correct eight-bit word is:

P(8 correct bits) = (1 — BER)8 1

Packets come in various lengths; 128 words
is representative. The last word is a check-
sum, allowing errors in the block to be
detected. All 128 words must be received
correctly. The probability that 128 correct
eight-bit words, or one entire packet of
representative length, will be received is:

P(correct packet) = P(8 correct bits)!28 (2)

The probability that a correct packet will
be received is defined as the number of suc-
cesses divided by the number of attempts.
The inverse of this is the average number of
attempts that must be made te get one good
packet through:

N(attempts) = 1/P(correct packets) (3)

The results are plotted on the graph in
Figure 2. They show that, without error cor-
rection, the number of attempts remains at
essentially one transmission per packet up
to about 0.0001 BER (1 bit per 10,000
altered). The number of attempts then rises
quickly to an average of two transmissions
at a BER of 0.0005 and three at 0.001.
Beyond that level, the number of attempts
required to successfully get a packet through
become astronomical.

By comparison, a Hamming sequence
will be accepted if it has either no errors, or
a single-bit error. Because a Hamming
sequence is seven bits long, the no-error
probability is:

P(7 correct bits) = (1 — BER)? @
and the probability of exactly one error is:

P(exactly 1 bit error in 7) =
7*BER*(1 — BER)® &)

Thus, the probability of no errors, or exactly
one error, is the sum of Equations 4 and §:

P(0 or 1 error in 7) = P(7 correct bits) +
P(exactly 1 bit error in 7) (6)

Because you can only encode four bits
onto a seven-bit Hamming sequence, you
need 256 Hamming words with one or zero
errors each, to convey 128 words with no
errors. The probability of this occurring is:

P(256 correctable sequences) =
P(1 or 0 errors in 7)256 (7

And, like the eight-bit word, the number
of attempts required is:

N(Hamming attempts) =
1/P(256 correctable sequences) 8)

This is also plotted in Figure 2. You can
see that Hamming sequences require no
retransmittal until there’s a BER of 0.005 —
nearly twice the BER that will bring an
uncorrected link to its knees! A Hamming
encoded link can maintain a useful through-

put with less than two attempts per packet
until it reaches a BER of 0.02 — nearly 20
times higher than the link without error cor-
rection.

Of course, this doesn’t come without cost.
You may have noticed that Hamming
sequences are 7/4 longer; that is, they are
nearly twice as long as the unprotected
packet. Does this overhead pay for itself?

Yes. The number of bits per packet is the
basic number of bits per individual packet
times the average number of attempts:

TXBITS(Hamming) =
7*256*N(Hamming attempts) 9

and

TXBITS(Normal) = 8*128*N(attempts) (10)

These are plotted in Figure 3. Note that
for low error rates, the uncorrected link
without Hamming codes outperforms the
Hamming link by almost 2:1, requiring only
1024 bits compared with 1792 Hamming
bits. The link errors are too few to justify
the high overhead of the Hamming bits. At
about 0.0005 BER, the two are equal in per-
formance. On the average, the Hamming
link will require less than two transmissions
for BERs up to 0.01.

This analysis doesn’t include the possibil-
ity of using the more robust, but slower,
Hamming codes to support HF data rates
which could go as high as 1200 baud —
unthinkably fast for conventional HF packet.

Application to AMTOR

What about AMTOR? AMTOR uses a
seven-bit alphabet, with just four Is and
three 0s. A total of 35 characters can be

7/4 HAMMING CODE VS 8-BIT 128 BYTE BLOCK

100

[~ 8-BIT ASCI!
» 10k WITHOUT HAMMING —»
& F
= o
w L
'—-
= 8
<

g
& 7/8 HAMMING CODESJ
1 L4 b Ll 1 EENIn L 1 lll.llu_ NN

0.0010
BIT ERROR RATE

0.1
0.0000 0.0001

0.0100

0.1000

Figure 2. Attempts versus BER, 128-byte packet.

Communications Quarterly 91

7/4 HAMMING CODE VS 8-BIT 128 BYTE BLOCKS

100000

8-BIT ASCII
WITHOUT HAMMING —»

10000

1000
7/48 HAMMING CODES

BITS TRANSMITTED
PER VALID PACKET

100

0.0000 0.1000

0.0010 0.0100

BIT ERROR RATE

0.0001

Figure 3. Average transmitted bits per 128-byte packet.

7/4 HAMMING CODE VS 7-BIT 3 BYTE BLOCKS

10 ¢
- AMTOR
- WITHOUT HAMMING ——s,
e T /
S
R =
- E j
- 7/4 HAMMING CODES
0.1 Ll L Leiill Ll L LiLill L LLliill Lo L L LLLLL
0.0000 0.0001 0.0010 0.0100 0.1000

BIT ERROR RATE

Figure 4. Attempts versus BER, AMTOR 3 bytes x 7 bit group.

7/4 HAMMING CODE VS 7-BIT 3 BYTE BLOCKS

1000

LELELBLA

T

(=]
b4
2
¥ AMTOR
2o 100k WITHOUT HAMMING —,
=5
-3 C
ex [
mo
7/4 HAMMING CODES
10 Ll L L LU L Lol il Ll il
0.0000 0.0001 0.0010 0.0100 0.1000

BIT ERROR RATE

Figure 5. Average transmitted bits per AMTOR 3 bytes X 7 bit group.

92 November 1990

encoded. Characters are sent in groups of
three. Any character which doesn’t confirm
to this 4/3 sequence is detected as an error,
and generates an RQ (Repeat Request)?

The analysis is basically the same as it is
for packet. The exception is that the basic
block is three seven-byte words, which can
be encoded onto six seven-byte Hamming
sequences. Figures 4 and 5 show the results.
Surprisingly, Hamming sequences have little
advantage over short AMTOR sequences.
Uncorrected AMTOR more than holds its
own until enormously high BERs of 0.05
are reached. Only in the presence of abso-
lutely incredible noise levels of 0.1, does
AMTOR Hamming gain a 2:1 advantage
over straight AMTOR. These results
shouldn’t come as a great surprise to
AMTOR enthusiasts. The key lies in the
very short AMTOR block lengths, However,
I haven’t taken the effects of false
acknowledgement into consideration here —
specifically the misinterpretation of an “ACK”
(Acknowledgement) as an “RQ” (Repeat
Request)?

Frankly, AMTOR doesn’t appear to be
much improved by Hamming sequences.
Using a higher data rate wouldn’t change
this situation much because AMTOR
spends a significant amount of time waiting
for transmitters to change over. Shortening
the data transmission time wouldn’t appear
to reduce the overall time significantly.
AMTOR efficiency might improve if a
longer sequence with Hamming codes is
used, but that would involve a major change
to the AMTOR protocol.

Technical details of
Hamming codes

How do Hamming codes work? To
understand how they work, you must first
understand the concept of Hamming dis-
tance. Hamming distance is the number of
bits that would have to be changed to trans-
form one binary word into another. For
example: 0011, 0101, 1001, and 0000 are all
within one Hamming distance of 0001. By
contrast, 1110 is separated by four bits dis-
tance from 0001, and all four bits would
have to be altered to change | (01H) to 14
(OEH). Hamming distance can be computed
by “exclusive OR’ing” the two binary words
together and counting the Is.

Hamming sequences which can correct
single-bit errors use an “alphabet” in which
all the legal sequences that can be transmit-
ted have a Hamming distance of three from
each other. For example, Table 1, the encode
table used in the text, has sixteen seven-bit
sequences out of a possible 128, all of

which differ from each other by three or
more bits. The other 112 possibilities repre-
sent erroneous sequences caused by noise
that creates a one-bit change in one of the
sixteen legal sequences. Because the legal
sequences are separated from each other by
three bits, these erroneous sequences will be
separated by two or more bits from all other
legal sequences — except for the one which
was actually sent. Using the example in the
text, if the sequence encoding 04H is altered
at the LSB to 100 1101, this sequence is still
at least two bits removed from any other
Table 1 sequence, except 100 1100. Thus,
you can assume that an erroneous sequence
should actually be the legal sequence
“closest” to it.

Two-bit errors still won’t produce a legal
sequence. They won’t decode correctly, either.
Hamming codes of distance three can’t dis-
tinguish between a correctable single-bit
error and an uncorrectable two-bit error.

Generating the Hamming
sequence

Hamming sequences use parity bits based
on the message word to be encoded. The
parity bits are defined so they will actually
point to zero (the error-free condition), or a
binary number representing the bit position
in error. Because of this, bits in a Hamming
sequence are numbered from I to N, rather
than the binary starting point of zero. Three
parity bits are needed to handle a seven-bit
sequence, leaving four bits available as mes-
sage bits.

Table 3 shows how parity bits are defined
for 7/4, 15/11 (four parity bits), and 31/26
(five parity bits) sequences. Parity bits are
assigned to locations corresponding to
integer powers of two within the sequence
(bits P1, P2, P4, P8, and P16), and message
bits to all others. A “1” at the intersection
of a message bit row and parity bit column,
means that the message bit should be
included when determining the correspond-
ing parity bit. Following the example in the
text, “Is” appear opposite M3, M35, and M7,
under parity bit P1. These bits are XOR’d
together to form the parity bit 1. P2 is the
XOR of message bits M3, M6, and M7, and
P4 is the XOR of M5, M6, and M7.

Hamming sequences were originally
intended for hardware generation and detec-
tion? Figure 6A shows how the 7/4 code
above can be created in hardware for the
transmitter. The parity bits are woven into
the sequence as shown. This figure illus-
trates the generation of the 1001100
sequence for 04H, given in the text.

The receiver in Figure 6B generates the
same parity bits — P1, P2, and P4 — and

XOR’s each with its corresponding received
parity. The resulting three-bit word is called
the “syndrome,” and points to the binary
position of the bit in error. As shown, the
receiver copies 1001101, generating a syndrome
of 7. The syndrome is applied to a 1-of-8
decoder. Zero is the “no errors detected”
condition; 1, 2, and 4 indicate that the par-
ity bits themselves were in error and aren’t
needed to correct the message bits. Finally,
3, 5, 6, and 7 are XOR’d with their cor-
responding message bits. Bit 7 in the exam-
ple is XOR’d by the decoded syndrome,
back to its correct value of 0.

The Hamming codes were developed when
such hardware solutions were essential for
implementing the technique. Solutions of
this type are still necessary for longer
sequences where the decode tables can
become prohibitively large. However, as
noted in the text, look-up table schemes in
software are now a more efficient implemen-
tation for short sequences like the 7/4 code?

)
=)

P16

M3
M35
Mé
M7

oo oo
(=T ==~]

M9

MI10
Ml

MI2
M13
Mi4
MI15

|
1
|
I
|
i
|
I
|
|
|
|
I
|

c oo o oo o

M17 1
MiIB 1
MI9 1
M20 I
M21 1
M22 1
M23 1
M24 1
M25 1
M26 1
M27 1
M28 1
M29 1
M30 1
M3l 1

N S e el =R =l = R =R = ="

p—

———15/11 sequences}——

P4 P2 P1
0 1 1
1 0 1
1 1 0
1 1 1
~7/4 sequences)——
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
I 0 |
1 1 0
1 1 1

—(31/26 sequences}

‘Table 3. General scheme for determining parity for 7/4, 15/11, and 31/26 Hamming sequences.
A “1” indicates that the corresponding message bit should be included in the XOR tree for that

particular parity bit.

Communications Quarterly 93

DO-10)
D1-10)
D2-(1)
D3-(0) - :
L
Pl P2 M3 Pa M5 M6 M7

1) 10} o) 1) (1) 0) 10}

TRANSMISSION MEDIA

Figure 6A. Hardware encoding of data 0100 onto 7/4 sequence 1001100

RECEIVED SEQUENCE
WITH 1 ERROR

I/ I/ I/ I/ I/ RECEIVED SEQUENCE
P P2 M3 M5 M6 7
(1) (0)) i) 0) (

M WITH 1 ERROR

P4
(0) (1 (%) g

4 $
] 4) ® D-tor00]
10) E
(o) ® feyol o
(=]
i
(11 H
e @-muz @
o
(%]
10)
% 1 (01 ® (0103
1
N\ o o |o)/ N\ |i*jo)/
50 51 52
SYNDROME 7 1%
6
(1%) (1% x| 10r8 5
DECODER 14 nc)
3

12 (nc)
—(NC)
NO ERRORS DETECTED

Figure 6B. Hardware decoding of a 7/4 receiver. **” indicates bit in error and corrections.

94 November 1990

Hamming codes assume that two-bit
errors within a word are much less likely to
appear than single-bit errors. This isn’t
strictly true, Many errors occur in bursts,
causing multiple errors and even complete
loss, or erasure, of entire the word.
Nevertheless, Hamming codes can easily
correct most errors in communications.

Summary

The main limitation to the more wide-
spread implementation of this simple
scheme is the lack of an accepted protocol.
The techniques I’ve described here are easily
implemented on any computer/TU system
capable of straight ASCII operation. The
integration of this technique into the AX.25
packet protocol may be a bit more compli-
cated, but it would improve HF packet
throughput significantly. In fact, Hamming
code applications could improve this form
of packet to such a dramatic extent, that
some serious research may be in order.

I invite all who wish to experiment with
the development of a new protocol based on
the Hamming technique to contact me,
either by mail or at my packet address,
KB6IC @ KOBOY. R

References

1. RW. Hamming, “Error Decting and Error Correcting Codes,” Befl Sys-
tem Technical Journal, Volume 29, April 1950, pages 147-160.

2. Ben White, *Hamming-Code Decoding,” Dr. Dobbs Journal, October
1989, pages 52-36.

1, The ARRL 1986 Handbook, 63rd Edition, The American Radio Relay
League, Newington, Connecticut, 1986, page 19-10.

4. John D. Lenk, Handbook of Logic Circuits, Reston Publishing Com-
pany, Reston, Virginia, 1972, pages 90-93,

