By Bryan Bergeron, NUIN
30 Gardner Road, Apt. 1G
Brookline, Massachusetts 02146

DIGITAL SIGNAL
PROCESSING

Working in the frequency domain

hough most of us are comfortable

working in the time domain, when it

comes to digital signal processing
(DSP), much of the work is done in the fre-
quency domain. There are certain motiva-
tions for, and constraints associated with,
performing digital signal processing in the
frequency domain. I'll discuss these motiva-
tions and constraints, and review the Fourier
Transform and its descendants.

Frequency domain processing

Like the oscilloscope and the spectrum
analyzer, digital time domain and frequency
domain signal processing take two very
different perspectives of the same phenomena
(see Figure 1). Time-domain waveforms
viewed by an oscilloscope and frequency-
domain spectra viewed through a spectrum
analyzer are transforms of each other. One
view doesn’t carry any more data about a
signal than the other. Rather, each provides
a different way to think about and work
with the same signal.

Frequency domain processing of a signal
has two distinct advantages over processing
in the time domain: tractability and efficiency.
Often a problem that’s virtually unsolvable
in the time domain can be deciphered easily
in the frequency domain. Consider the chal-
lenge of equipping a RADAR system with real-
time pattern recognition capabilities. While
this is a sizable engineering feat in the time-
domain, it becomes a trivial problem in the
frequency domain. In the frequency domain,
a signal from an aircraft or other object of
interest can be looked at independent of the
size, orientation, or position of the object!

For cases that can be solved in either
domain, working in the frequency domain is
almost always simpler. For example, you can
easily determine the frequency response of a
microphone by sampling its output (using a
white noise source) every few milliseconds and

Amplitude —»

| L T R T
0 2 4 6 8 10 12 14 18 20

Time (seconds)

Amplitude —»

1 I | |
0 0.25 0.50 0.75 1.00

Frequency (Hz)

Figure 1. How the Fourier Transform relates time to fre-
quency. In the time domain (top), a signal is composed of
short bursts regularly spaced at one per every four seconds
(0.25 Hz). When transferred via the Fourier Transform
from the time domain to the frequency domain (bottom),
the same signal appears as a response at 0.25 Hz.

then manipulating the signal in the frequency
domain. While you could obtain the same
results working with a digital filter defined
in the time domain, frequency domain work is
more straightforward and conceptually clean.
It is also more efficient computationally.
Here’s an illustration of the potential
advantages of working in the frequency
domain. Think about the DSP challenges
associated with constructing adaptive
filters2* and in filtering unwanted noise

*Adaptive {ilters are filters that cancel or minimize noise and interference
by dynamically updating the filter coelficients to adapt to the characteris-
tics of the interference,

Communications Quarterly

45

46 November 1990

from a signal. Adaptive filters are com-
monly implemented using digital technology
because of the inherent stability and mathe-
matical tractability of the algorithms used
for the computation of the filter coeffi-
cients. Although the algorithms are straight-
forward when implemented in the time
domain, the performance of these algorithms
is typically less than that of equivalent fre-
quency domain algorithms? The more com-
putationally efficient frequency domain
implementations of adaptive filters are often
called frequency domain adaptive filters, or
block adaptive filters?

Frequency domain work lends itself to the
identification and elimination of noise and
other artifacts, especially when these
undesirable signals are significantly higher
or lower in frequency than the desired sig-
nal. A 60-Hz noise in a communications
signal (bandwidth 300 to 3000 Hz) or 2-kHz
instrumentation noise superimposed on a
200-Hz signal are examples of undesirable
signals. Think of the procedure for remov-
ing high or low frequency noise from a sig-
nal as a simple multiplication process in the
frequency domain?® For example, if the 60-Hz
noise is distinct and separate from a 300 to
3000-Hz signal spectrum, then a simple rectan-
gle function can zero all data values below
300 Hz. That is, data values between 300 and
3000 Hz are multiplied by 1; all other data
values are multiplied by zero (see Figure 2).

%

'

Anti-Allasing
Filiter

Sample & Hold

Atp-D
Conversion

D-to-A
Conversion
Reconstruction

Filter

v

L\Qj

Figure 2. An example of Digital Signal Processing in the
frequency domain.

Look at the top of Figure 2. It shows that
the original noisy analog signal is first pre-
processed by a high pass (anti-aliasing) filter.
Next the digitizing hardware samples the
analog signal and maps the values onto dig-
ital values at regular time intervals. A Fast
Fourier Transform, (FFT — more on this later),
or its equivalent, is then used to move the
signal into the frequency domain. The digi-
tal filter shown in the middle of Figure 2 (in
this case, a simple rectangular function)
removes the unwanted signal (represented by
the small peak to the left of the main signal
peak). Once the filter function has been
applied, the signal is converted back to the
time domain by performing an inverse FFT
on the data. After digital to analog (D/A)
conversion and filtering, the desired signal,
free of noise (shown at the bottom of the
figure), is available for futher processing or
direct use.

If the signal data and the noise aren’t
clearly distinguishable (as is normally the
case), you must select a judicious cutoff,
based on the known characteristics of the
unwanted noise and the desired signal. Also,
the digital filter function you choose must
gradually attenuate the unwanted spectra in
the frequency domain; the spectra can't sud-
denly drop off to zero. Such a sudden cutoff
would result in false accentuation of fre-
quencies corresponding to the cutoff point
in the frequency domain. This idea is devel-
oped in the discussion of windowing found
in the section on frequency domain DSP
considerations.

The Fourier Transform

You can’t work effectively with DSP in
the frequency domain without a good concep-
tual understanding of the Fourier Transform
(named after the 18th century mathematician
Jean Baptiste Joseph Fourier). By relating
time to frequency, this transform is the basis
of frequency domain processing as it is
known today. For the mathematically
inclined, the Fourier Transform is defined
by the following equations:®

x(t) = 5 WX (Juw)elotdt (n

™

o0

Kt = 5 “s(t)eJotdt @)

where j =V -1 and « = 2#f. Notice that
the transformation from the frequency
domain to the time domain (Equation 1),
and from the time domain to the frequency
domain (Equation 2), integrate over the
limits from — o to + oo, This results in the
mathematically correct concept of negative

frequency, which has no basis in physical
reality.

In practice, the complex exponential, € =+ jwt,
is usually replaced with the trigonometric
expression:
e-jot = cosw!t * jsinwt

Although mathematically elegant and con-
ceptually beneficial, the basic Fourier Trans-
form is of limited practical value when
working with digital computers because it
assumes that the data to be transformed are
continuous. Actually, analog data are sam-
pled and digitized into a machine-readable
form at discrete intervals. To allow high
speed computers to handle frequency-time
domain transformation calculations, the
Fourier Transform, which uses the infinitesimal
dt, was modified into the Discrete Fourier
Transform (DFT) which expects either a
quantized continuous signal or a signal of
limited duration. Mathematically, the DFT
appears as:®

z

Xp = Xkexp[jﬁf—] 3)

g

=
z &

-1

X, = éExk expl —jz—lr@-] @
k=

Notice that the integral has been replaced
with summation over N discrete data points.
The frequency to time transform in Equa-
tion 3 also differs from the time to fre-
quency transform in Equation 4 as the
result of a change in the sign of imaginary j
and the scaling multiplier 1/N.

Creating a workable computer program to
perform these calculations is relatively
straightforward. However, because a merely
workable program is seldom good enough
for real applications, researchers have spent
many years increasing the computational
efficiency and memory requirements of DFT
algorithms. There is now a wide variety of
rapid and efficient methods for computing
the DFT. The original Fast Fourier Trans-
form (FFT) and the more recent Fast Hart-
ley Transform (FHT) are two popular ones.

The Fast Fourier Transform

The Fast Fourier Transform may be the
best known method for computing the DFT
rapidly. The FFT takes advantage of the
redundant calculations within the DFT — a
primary reason for the increased speed of
the FFT over the basic DFT. As its basic
premise, the FFT and related algorithms
sort data using a data-pairing permutation
process (sometimes referred to as the “but-
terfly” because of the appearance of the

associated data flow diagram) until data is
separated into pairs. The Fourier transform
calculation on these data pairs is rapid. It is
computationally more expensive to compute a
32-point DFT than it is to compute 16 two-
point DFTs.

A large part of the data-pairing permutation
in the FFT algorithm is concerned with a
bit reversal procedure which scrambles the
order of the output data creating a mirror
image of the input. The speed of this bit
reversal (or reshuffling of data) defines, to a
great degree, the efficiency of a given FFT
algorithm. (In cases where execution speed
is critical, this bit reversal can be accom-
plished in ASSEMBLER.) To increase the
speed of the actual Fourier transform, you
can substitute a trigonometric look-up table
for the calculation of trigonometric func-
tions supplied by the host language.

The FFT algorithm has a major restric-
tion. For the data-pairing permutation to
function properly, the number of discrete
data input values (N) must be an integral
power of 2 (2, 4, 8, 16, 32, 64, 128, and so
on). Because the FFT expects 2" data
points, zero filling or padding is commonly
used to increase the number of data points
to the next higher power of 2; that is, from
45 to 64 or from 120 to 128 data points.
Unfortunately zero filling can result in
phantom responses. These phantoms can be
reduced by windowing the data. This means
you variably attenuate the first and last few
input data values to reduce sharpness of the
drop to the zero-padded area. Another prob-
lem associated with zero filling is related to
the increased storage and computational
requirements imposed by the added data,
which add nothing to the information con-
tent of the signal.

It may seem that you have to go to a lot
of trouble to achieve an increase in execu-
tion speed, but considerable time can be
saved by substituting the FFT for the DFT.
For example, the time required to compute a
DFT is proportional to N2, while the time
required to compute the FFT is propor-
tional to N x Logy N — thanks to the
data-pairing permutation. For large data
sets, this can amount to a significant sav-
ings in computer resources (see Table 1).

Figure 3 provides a BASIC implementa-
tion of an FFT subroutine (compatible with
BASICA for the IBM-PC). It is based, in
part, on a listing by Brook and Wynne? The
subroutine assumes that the arrays for hold-
ing real data (AR) and imaginary data (Al)
have been defined with dimension N.
Changing the sign of 1D from plus to minus
allows the inverse function to be performed
on the data array. For example, ID = +1

Communications Quarterly 47

48 November 1990

Samples (N) DFT FFT
8 64 24
16 256 64
32 1024 160
64 4096 384
128 16384 896
256 65536 2048
512 262144 4608
1024 1048576 10240

Table 1. A comparison of the number of compuiations
involved in calculating the DFT and the FFT of a signal.
Notice that as the sample size (N) increases, FFT superi-
ority becomes more significant. That is, with a 1-K sam-
ple size (1024 elements), the DFT/FFT ratio is approxi-
mately 100:1.

for time to frequency transformation and
ID = -1 for frequency to time transforma-
tion. Lines 100 to 130 of the subroutine per-
form the scaling function when the transfor-
mation is from the time to the frequency
domain. Lines 140 to 230 perform the data
pairing and lines 250 to 420 are responsible
for the actual Fourier transform. As noted
previously, the data-pairing permutation can
be coded in ASSEMBLER to maximize com-
putational efficiency. As you can see, this
algorithm produces the same number of
data output points as data input points.

100 [FID+0THEN FOR] - | TON

1o AR(J) - ARIJV /N

120 AL = ALID /AN

130 NEXT

140 NHLF = N2 NMI1 = N-1:]=1

150 FORL -1 TONMI

160 1F (L +=]) THEN 190

170 T=AR(:AR() = AR(L): AR(L) - T
180 TX ~ AT() AL(]) = AL(L): AL(L) = TX
190 K = NILF

200 1F (K »=]) THEN 230

210 J=)-K:K=K/2

220 GOTO 200

230 J=1+K

240 NEXT L

250 FORMI - 1 TOM

260 UR=-10:Ul=00

270 ME-2MI:K-ME/2

280 CON - P1 /K

290 FOR] 1 TOK

300 FOR L -] TO N STEP ME

310 LPK = L+ K

320 TR = AR(LPK} * UR Al (LPK) " Ul
330 TI = AR (LPK) * Ul + Al (LPK} * UR
340 AR (LPK) = AR (L) - TR

350 Al {LPK) = AL(L)-T1

360 AR (L1 = AR (L) + TR

370 AL(L) = AT(L) + TI

380 NEXT L

390 UR - COS (CON "])

400 Ul - - SIN(CON*) * 1D

410 NEXT |

420 NEXT M1

Figure 3. A simple FFT subroutine in BASIC, compatible
with BASICA for the IBM-PC and clones. This code can
be easily extended to include plotting functions to produce
graphs like those shown in Figures 4-7. For time critical
applications, lookup tables can be substituted for the SIN
and COS functions supplied by your BASIC interpreter.

Notice also how the computationally
expensive evaluation of the complex
exponential has been replaced with an
equivalent trigonometric expression (lines
390 to 400). Replacing the COS and SIN
evaluations with a look-up table is an easy
way to improve the performance of this subrou-
tine significantly, without resorting to work-
ing in ASSEMBLER. The tradeoffs associated
with the faster speeds provided by a look-up
table include the cost of RAM required to
hold the look-up table elements and
decreased accuracy of the transform func-
tion (because the values returned for each
SIN and COS evaluation are limited by the
bit length and angle resolution of the table).

Because you can’t fully appreciate the
operation of the FFT algorithm without
illustration, I’ve included graphs of the
actual input and output data from an FFT
program similar to the one in Figure 3,
implemented in MacForth on the Apple
Macintosh (see Figures 4 through 7). Notice
that, for each figure, there are three values
plotted for the signal in the frequency
domain. The real and imaginary components
correspond to the values in the AR and Al
data arrays used Figure 3. The magnitude
component, which corresponds to the familiar
power spectra of the signal, is proportional
to the absolute value of the square of the
real and imaginary components.

The Fast Hartley Transform

The FFT has been a dependable work-
horse for Frequency Domain Digital Signal
Processing (FDDSP) since the mid-sixties.
However, the demands of modern DSP appli-
cations and the move from mainframe sys-
tems to microcomputers have spurred the
development of more efficient algorithms.
One of the more notable descendants of the
FFT is the Fast Hartley Transform (FHT),
based on the continuous transform
introduced by RV.L. Hartley in 19428 Like
the FFT, the FHT maps a signal from the
time domain into the frequency domain
(and vice versa). However, where the FFT
maps a real function of time into a complex
function of frequency, the FHT maps a real
function of time into a real function of fre-
quency. Mathematically, the FHT appears
as:

X(1) = E H(f) cas [ﬁ}\-!&] ®)
=0

!
H(f) = Fltjcas [i}’;&])

E
N

[\.12

=

1=

Time Domain Signal FFT - Magnitude

LU]

FFT - Real Component FFT - Imaginary Component

Figure 4. A time domain sinusoidal sigaal sample with an integer number of complele cycles, and nearly equal ampli-
tude values at either end of the sample (top, left). The magnitude or power spectra (top, right), as well as the real (bot-
tom, left) and imaginary (bottom, right) components of the FFT are also illustrated. Note the relative purity of the mag-
nitude plot. Most of the signal energy is concentrated in a few spectral lines. Note also that in this figure, as well as the
following three, the FFT plots contain both positive (left side of each frequency domain plot) and negative (right side
of each frequency domain plot) frequency components. For practical purposes, you can ignore the right half of each plot.

Time Domain Signal FFT - Magnitude

T u|||

FFT - Real Component FFT - Imaginary Component

Figure 5. A sinusoidal signal sample in the time domain in which the sampling interval and frequency are such that irregular
points in the waveform have been capiured (top, left). Even though this signal is of the same amplitude and purity as
the sinusoidal signal in Figure 4, notice the relative impurity of the magnitude plof; i, there is now a considerable amount
of energy distributed throughout the frequency domain plot. The solution is to either employ a windowing function,
or to adjust the sampling interval so an integer number of complete cycles are captured.

Communications Quarterly 49

50 November 1990

Time Domain Signal

FFT - Magnitude

FFT - Real Component

FFT - Imaginary Component

Figure 6. In this example, there are two sinusoidal signals, one double the frequency and one quarter of the amplitude
of the other (top, left). Notice the extra responses in the frequency domain in the magnitude (top, right), real (bottom,

left), and imaginary (bottom, right) components.

Time Domain Signal

|l||||I|||.||.||-||-|-I|1]l|”|‘

FFT - Magnitude

FFT - Real Component

FFT - Imaginary Component

Figure 7. The time domain signal in this example is one complete cycle of a simple square-wave signal (top, left). When
compared with a similar sinusoidal signal in Figure 4, you'll note there is a relatively large amount of spectral energy
distributed above the main signal peak (top, right). This is to be expected, because square waves are composed of a large

number of harmonically related sine waves.

where cas, in both the frequency to time
(Equation 5) and time to frequency trans-
form (Equation 6), is equivalent to the
cosine and sine of the expression in the
brackets. That is, cas (8) = cosine (3) +
sine (f3). Notice the similarity of Equations
5 and 6 with those that describe the FFT.
The main difference is the substitution of
the real function cas(2«ft) for the complex
exponential term in the FFT.

Computationally, working with real num-
bers (instead of real and imaginary numbers)
is very advantageous. For each arithmetic
operation required to compute the FHT, six
operations are required to compute the FFT.
Four operations are necessary for each com-
plex multiplication or division, and two
operations are required for complex addi-
tion or subtraction® Compared with the
FFT, the FHT has associated memory savings
in addition to computational savings. FFT
calcuation requires the use of complex num-
bers. Because complex numbers are composed
of two distinct parts (real and imaginary),
they require twice as much computer storage
space as real numbers.

Consequently, the FHT requires only
about half as much working memory as the
FFT, because complex data arrays require
twice as much space as real data arrays? The
FHT is an especially attractive alternative to
the FFT when you have a large volume of
data to work with, as in digital image process-
ing. The FHT, while more efficient than the
FFT, has considerably more code associated
with its implementation than the FFT. If
you are interested in coding examples of the
FHT, see the excellent text by Bracewel]!?

Frequency domain DSP
considerations

The FFT and its derivatives constitute the
core software tools used for virtually all
FDDSP applications. Like other software
tools, they can easily be misused if the oper-
ator doesn’t understand the underlying
assumptions of their design. To reap the
greatest benefit from any FDDSP system,
you have to understand the characteristics
of the signal to be processed and also be
aware of the capabilities and limitations of
the software and hardware components of
your DSP system. Some of the more perti-
nent aspects of DSP in the frequency
domain are outlined in more detail in the
sections that follow.

Windowing

In most FDDSP systems, signal samples
are collected into blocks of length 21 and
then processed by some type of FFT

algorithm, In FDDSP it is important to
assume that each successive discrete sample
represents part of a continuous signal which
repeats indefinitely what is in the sample;
that is, the signal is periodic. If the sam-
pling frequency and sampling interval are
selected so that complete integer number of
cycles are captured in each sample (as in
Figure 4), then the sample boundaries will
be of nearly equal amplitude, and the tran-
sition from one sample to the next will be
smooth. If, on the other hand, the sampling
frequency and interval are such that irregu-
lar points in the waveform cycle are cap-
tured, there will be high frequency artifacts
in the transformed data (as in Figure 5).
The effect will be most pronounced when
the sample contains an exactly odd number
of half cycles, because the discontinuity at
sample boundaries will be maximum!!

It’s obvious that one condition under
which the FFT works best is when the data
to be transformed smoothly approaches 0 at
both ends of its range (Figure 4). If, how-
ever, the actual data do not conform to the
ideal, you can force them into an acceptable
form by multiplying them by a window
Jfunction before calculating the transform. A
window function effectively multiplies data
values near the center of the sample by
unity, data near the ends of the sample by
0, and data between the center and ends by
some intermediate value. The nature of
these intermediate multiplicative factors
defines the nature of the window.

The triangular window is a simple and
fast window function, where the multiplica-
tion factor decreases linearly and symmetri-
cally toward both ends of the sample.
Another popular window function is the
Hanning function (see Figure 8), which pro-
vides better artifact reduction, at the
expense of computational efficiency. This
function is defined as:

wi{i} = 0.5(1—(cos(2w/N))

where i = the sample point number and
N = the total number of samples!? For
more information on window functions and
their uses, see the work by Press!?
Sampling jitter

It is a basic (but commonly overlooked)
assumption of FFT work that the signal is
sampled at regular time intervals — every 10
milliseconds, for example. Sampling jitter is
the distortion of the sampled signal due to
variations in the sampling interval. This jit-
ter, which increases the noise floor of a sig-
nal, affects higher frequencies more than
lower ones. Sampling jitter is most common
in systems that rely on software triggering

Communications Quarterly

51

52 November 1990

of the analog to digital (A/D) conversion
process, rather than the more stable and
reliable hardware triggering methods!
Software-based triggering systems that vary
only a few microseconds between samples
can add significantly to the noise floor of a
system.

Quantization error

Like sampling jitter, quantization error
raises the noise floor in a FDDSP system.
This is commonly referred to as quantiza-
tion noise. Like sampling jitter, quantization
error is a function of how the data is acquired
and processed, before the actual digital sig-
nal processing. Quantization error results

]
i
|
i
|
!

Amplitude —»
-«

Amplitude —»

_.Y
Time *

when the actual, instantaneous value of a
continuous signal is mapped onto the
nearest integer value supported by the A/D
conversion hardware. For instance, quantiza-
tion error can occur when both 12.157 and
12.234-volt signals are mapped to 12.2 volts
by an A/D converter. This error can be
minimized by using an A/D converter with
greater resolution. For example, you could
use a 12-bit digitizer in place of an eight-bit
unit. A compromise must always be made
between quantization error (noise) and the
increased cost, speed penalty, memory
requirements, and computational load
imposed by a higher resolution A/D con-
verter.

Sampling frequency

Although extrapolation procedures have
been developed for the FFT to accurately
determine the frequency of signals higher
than the Nyquist frequency!* it’s generally
accepted that the sampling frequency must
be at least twice the frequency of the signal
to be sampled. This means there should be
at least two samples per cycle of the highest
frequency contained in the signal. It’s often

Figure 8. An example of how windowing, when applied to
time domain signals prior to FFT processing, can help min-
imize artifacts due to discontinuities at the ends of the sam-
ple. In this example, the original signal (top) is preprocessed
with the Hanning function (depicted graphically, center),
to equalize signal amplitudes at both ends of the sample
(bottom). Notice that one side effect of windowing is that
data points at both ends of the sample are thrown away.
The consequences of this data loss are described in the text.

At—>|’<—

Amplitude —»

0 Time (Sample Number) N-1

Amplitude —»

“hm[lull,

Frequency

(=]

Figure 9. Spectral resolution versus sampling time for the
Discrete Fourier Transform (DFT). The spectral resolution
(Af) is equal to (N x At)1, where N is the number of sam-
ples taken of the signal in the time domain, and At equal
to the sampling time in seconds. For example, if the sam-
pling time in the time domain (top) is 10 ms, and the num-
ber of samples is 100, then the spectral resolution (bottom)
will be (100 x 0.010), or 1 Hz.

necessary to use a low-pass filter front end
to any A/D converter to assure that only
frequencies which can be handled ade-
quately are passed on to the converter.
Otherwise, aliasing (the folding down of
undersampled signals) can result.

Resolution

The spectral resolution of an FDDSP sys-
tem is closely related to the sampling fre-
quency, sampling jitter, and windowing. In
general, the frequency resolution is about
equal to the reciprocal of the sampling
interval in the time domain (see Figure 9).
The smaller the sampling interval, the
higher the frequency resolution. Sampling
jitter effectively decreases the resolution of
a system, because the certainty of the sam-
pling interval, and therefore the frequency
interval, is diminished. The noise associated
with sampling jitter also diminishes the
effective resolution of system, especially
higher frequency signals.

Windowing also decreases the effective
spectral resolution of a system. While reduc-
ing the number of possible artifacts, win-
dowing throws out or gives less weight to
the sampled data at both ends. As Figure 9
illustrates, the FFT and its descendants pro-
duce one output data point for each input
data point. Throwing out data in the time
domain, in effect, spreads the frequency
domain signal by a proportional amount.
For example, by using windowing to decrease
the effective number of input data points by
10 percent, you decrease the frequency reso-
lution by approximately 10 percent.

Aperture time

Aperture time, like quantization error, is
largely a function of the A/D hardware
used in signal acquisition. The aperture time
of an A/D converter — the time during
which an analog signal is actually sampled
before being digitized — can be likened to
the shutter speed of a camera. When the
camera shutter is open, light falls on the
film emulsion exposing silver halide crystals
to light energy. For a given shutter speed,
slowly moving (low frequency) objects may
be exposed clearly and accurately, while
very fast objects (high frequency) might
appear as blurs on the developed film. In
photography, the solution is to use a faster
shutter speed — assuming the film has
enough latitude to work at the higher speed.
It may be necessary to use a faster film with
less resolution to capture a clear image of
the faster objects.

The photograph analogy is useful if you
think of the A/D resolution as the film
resolution, the A/D conversion time as the

film speed, and the aperture time as the
shutter speed. High frequency signals can be
digitized accurately only with a relatively
short aperture time. But to use the short
aperture time, the sample-and-hold circuit
within the A/D conversion hardware must
be capable of acquiring the signal in a rela-
tively brief period of time. Of course, the
A/D conversion hardware must also be
capable of digitizing the signal before the
next sample time. A high resolution A/D
converter, like a 32-bit system (the photo-
graphic equivalent of low speed, high reso-
lution film), will generally support a lower
maximum sampling frequency than a low reso-
lution converter, like an eight-bit system
(high speed, low resolution film), assuming
the converters are in the same price/perfor-
mance range.

For many DSP applications, working in frequency
domain is not only more efficient than working in
the time domain, but the only means of arriving at
a solution to a particular problem.

Summary

For many DSP applications, working in the
frequency domain is not only more efficient
than working in the time domain, but the
only means of arriving at a solution to a
particular problem. The Fourier Transform
and its more computer compatible descen-
dants, including the FFT and FHT, serve as
the basis for the vast majority of operations
in the frequency domain. While powerful
algorithms for the FFT and FHT are easy
to implement on desktop computer platforms,
these frequency domain tools must be used
with caution. Intelligent use requires knowl-
edge of the signal to be processed and the
features and limitations of the available
DSP hardware and software.

With the rapid evolution and introduction
of inexpensive DSP software environments,
knowledge of the inner workings of both
time and frequency domain signal process-
ing is becoming a necessity. There are elec-
tronic circuit design prototyping techniques
available today that place powerful DSP
tools, like the FFT, in the hands of anyone
with a personal computer (see Figure 10).
To use these tools effectively, you must
understand the assumptions and tradeoffs
made by the software system designer. For
instance, if you use a look-up table to
increase the computational efficiency of the
supplied FFT algorithm, what effect does
this have on the accuracy of the trans-

Communications Quarterly

53

54 November 1990

[& File Edit Libraries Define Run Foat Style Windows

FFT Plotter

(1) Filter Transient Respon

Value ! LQggfAness2
1.6
1.2
08
0.4

=————— (1) FFTPlot =————

— =
dB's 0.4
-14.0153 g
-20.6976 1
-27.38 "2
-34.0623 i - ;
— 0 25 5 75
-47.427}, - Tire
-54.1094 | Filter Transient Response
-60.7917
-67.4741 e
-74.1564 L .0
-80.8388 —— . 5126 004041681
g L 3.2 48 i
(Feniot) EETEE M| Concel _!;ii:s Sirarn
KI FFT Plot 563 103585936
073 0509867
588 06855858
Frequency } : 101 0.8753568
0 ~14.01525) TREATS
[K] Si418724 12297264 R
_______ 0.2 - -14 57421 -44 48454 480712
0.3 -14.91352 <64 408 T o s 649096
0.4 Z14.99145 8394549 e
0.5 73079 =105.1829 H 859312
CH T L i

Figure 10. An example of the many, increasingly popular microcomputer-based DSP prototyping environments avail-
able to engineers. In this Apple Macintosh program (Extend™, from Imagine That!), you see a simple impulse function,
followed by a low-pass filter and an FFT plotter (top, left panel). The icons represent code modules, and the lines con-
necting them represent data-flow paths. The time domain plot appears in the right hand panel, partially obscured by
the FFT plot to the left and center of the display. Tools like this let engineers to design and debug complex DSP systems

in hours instead of weeks.

formed waveform? A knowledgeable user is
a powerful user.

In the next part of this series, I'll discuss
artificial intelligence (Al) techniques that have
been applied to digital signal processing in
both the time and frequency domains. H

References

1. 1. Brown and 5. Silverman, “Flesible High Speed hoage Processing
with Non-von Neamann Design.” Compuner Technology Review, 1986,
B(16): pages Y1-94,

208, Haykin, fnteodduetion o Adaprive Friters, Macmillan, Now York, 1984,
150, Stearns, "Fundamentals of Adaptive Signal Processing,”
Advanced Topics in Signal Processing, Lim and Oppenheim, editors,
Premice Hall, Englewood CUITs, New Jersey, 1988,

4. ML, Dey 1. MeCool, and B. Widrow, “Adaptive Filtering i the
Freguency Domain,” Provedire [EEE, 1978, 66(Dec): pages 1658-16349.
5. Aubane] and KB Oldham, “Fourier Smoothing Without the Fas
Fourier Transform,” Byte, Fehruary 1985, pages 207-218,

. 12, Brook and R.J, Wynne, “Fregqueney Characterization,” Signal
Provessing: Principles und Applications, Edward Arnold, Jondon, 1988,
7. 0. Brook and R.1 Wynne, Sigral Processing: Principles and Appliva-
nons, Edward Arnald, London, 1988

8. M.AL O Neil, “Faster Than Fast Fourier,”" Byvte, April 1988, pages 293-300.
y. R.NL Bracewell, The Faurier Transform and Its Applications,

-Hill Book Company, New York, 1986,

Bracewell, The Hartley Transforn, Oxtord University Press,
Oxlord, 1986,

11 A. Sewards, "Introduction 1o DS Electronics and Wireless World,
1988, 94(1630): pages 741-746.

12, H.1. Hutchings, “Interfacing and Signal Processing with C," Elec
tennics und Wirgless World, 1988, 941631): pages Y48-956.

13, W.H. Press, B.E. Flannery, S.A. Teukolsky, and W.I. Vettering, “Fouricr
Transform Spectral Methods,” Nwemerical Recipes in ©, Pross Synd
of the University of Cambridge, Cambridge, 1988,

14, S.E. Georgeoura, “Fast Fouricr Transforms of Sampled Wavelorms,™
Flectranies and Wireless World, 1988, Y311633); pages 11221126,

Bibliography

1. P Sewla, “Ruilding a Digial Filter: FIR Filler Features Guaraniee
Phase Lincarity,” Ham Radio, Apnil 1989, pages 917

2. 1P, Bergeron, NUIN, “Digital Signal Processing: Vart 1—The Fun-
damentals,” Ham Radio, April 1990,

