
Circuit Design on Your
Linux Box Using gEDA
Use your Linux box for professional-quality printed circuit board design using CAD tools created by the gEDA Project.
B Y S T U A R T B R O R 5 0 N

lot of attention-and hype-has focused on bringing
traditional office-productivity programs, such as the
0penOffice.org suite, to Linux. However, another
important- and far less-hyped- area where Linux's

desktop abilities come to the fore is in engineering software,
and in particular, CAD (computer-aided design).

Non-engineers tend to think of the term CAD as refer-
ring to mechanical design software, and they are partially
right. We are used to seeing complicated drawings of
mechanical assemblies appearing on computer screens in
advertising and television. However, CAD doesn't mean
only mechanical design. Electronics designers also long
have used computer-based design tools to help them per-
form their design tasks.

The area of CAD software used for electronics design is
typically referred to as EDA, short for electronic design
automation. Happily for Linux users, many EDA applica-
tions - both proprietary and open source- are now avail-
able for Linux. Perhaps the largest and oldest open-source
project is the gEDA Project. The gEDA Project is an active
community of hackers who have developed high-quality
EDA applications for many different electronic design
tasks. In this article, we examine a set of gEDA programs
you can use to design your own circuit boards from scratch.

EBA Qvervies,~
Designing circuits using EDA tools is analogous to creating
software using traditional software engineering tools. That
is, rather than using only one program to accomplish a job,
electrical engineers will use a wide variety of tools, each
tailored to accomplish its particular task efficiently. They
use each tool in a sequence as they progress from start to
finish through their design work, a concept known as
design flow. This concept should be familiar to software
engineers who might first use a flowcharting tool, then an
editor, followed by a compiler, then a debugger, as they
create applications ready for distribution.

Different types of circuit design use different flows. For
example, if you work on digital electronics, you might code
your design using a hardware description language such as
Verilog, and then use a Verilog compiler followed by a
waveform analyzer to simulate and analyze it. On the other
hand, if you are doing analog circuit design, you might
draw your circuit using a schematic capture program, and
subsequently use a circuit simulation program, such as

SPICE, to verify its correctness before proceeding to create
a PC board. Other, more-complicated designs might require
additional steps in the design flow.

In this article, our interest is to create a garden-variety
printed circuit board (PCB). To create a simple circuit board
using any EDA toolset- whether proprietary or open source-
the design flow looks like this:

1. Gather information about your clesign's requirements, as
well as find data sheets for available parts.

2. Create a high-level block diagram of your design, using
either paper and pencil or a general-purpose drawing pro-
gram such as Dia.

3. Enter your detailed design into the computer, and draw
its schematic using a special-purpose schematic capture
program.

4. Netlist your design's schematic, meaning that you export a
so-called netlist that captures all your design's components
and connections in a special-purpose file format.

5. Read the netlist into a layout editor, which is a special-
purpose drawing program for creating PCBs. Use the
layout editor to create a drawing of your PC board's
physical layout.

6. Export Gerber files from your layout program. The Gerber
files are industry-standard files that describe your PCB to
your PCB manufacturer.

7. Send the Gerber files to a PCB fabricator.

8. Receive your freshly manufactured PCBs, populate them
with components and test them out.

At any point in this flow, you might have to go back and
repeat a step if you find an error in a preceding step. Again,
this is similar to software engineering, where you have to go
back to edit and recompile your program if you find that it has
a runtime error. The only difference is that if you take a PCB
design to its completion by ordering boards, and then you find
a design error, you're stuck with a batch of bad boards-you
can't simply delete your work and recompile.

8 4 d J A N U A R Y 2 0 0 6 W W W L I N U X J O U R N A L C O M

