Circuit Design on Your
Linux Box Using gEDA

Use your Linux box for professional-quality printed circuit board design using CAD tools created by the gEDA Project.

BY STUARY BRORSOR

lot of attention—and hype —has focused on bringing
traditional office-productivity programs, such as the
OpenOffice.org suite, to Linux. However, another

/ “ important—and far less-hyped—area where Linux’s
desktop abilities come to the fore is in engineering software,
and in particular, CAD (computer-aided design).

Non-engineers tend to think of the term CAD as refer-
ring to mechanical design software, and they are partially
right. We are used to seeing complicated drawings of
mechanical assemblies appearing on computer screens in
advertising and television. However, CAD doesn’t mean
only mechanical design. Electronics designers also long
have used computer-based design tools to help them per-
form their design tasks.

The area of CAD software used for electronics design is
typically referred to as EDA, short for electronic design
automation. Happily for Linux users, many EDA applica-
tions —both proprietary and open source—are now avail-
able for Linux. Perhaps the largest and oldest open-source
project is the gEDA Project. The gEDA Project is an active
community of hackers who have developed high-quality
EDA applications for many different electronic design
tasks. In this article, we examine a set of gEDA programs
you can use to design your own circuit boards from scratch.

EDA Overview

Designing circuits using EDA tools is analogous to creating
software using traditional software engineering tools. That
is, rather than using only one program to accomplish a job,
electrical engineers will use a wide variety of tools, each
tailored to accomplish its particular task efficiently. They
use each tool in a sequence as they progress from start to
finish through their design work, a concept known as
design flow. This concept should be familiar to software
engineers who might first use a flowcharting tool, then an
editor, followed by a compiler, then a debugger, as they
create applications ready for distribution.

Different types of circuit design use different flows. For
example, if you work on digital electronics, you might code
your design using a hardware description language such as
Verilog, and then use a Verilog compiler followed by a
waveform analyzer to simulate and analyze it. On the other
hand, if you are doing analog circuit design, you might
draw your circuit using a schematic capture program, and
subsequently use a circuit simulation program, such as

SPICE, to verify its correctness before proceeding to create
a PC board. Other, more-complicated designs might require
additional steps in the design flow.

In this article, our interest is to create a garden-variety
printed circuit board (PCB). To create a simple circuit board
using any EDA toolset—whether proprietary or open source —
the design flow looks like this:

1. Gather information about your design’s requirements, as
well as find data sheets for available parts.

2. Create a high-level block diagram of your design, using
either paper and pencil or a general-purpose drawing pro-
gram such as Dia.

3. Enter your detailed design into the computer, and draw
its schematic using a special-purpose schematic capture
program.

4. Netlist your design’s schematic, meaning that you export a
so-called netlist that captures all your design’s components
and connections in a special-purpose file format.

5. Read the netlist into a layout editor, which is a special-
purpose drawing program for creating PCBs. Use the
layout editor to create a drawing of your PC board’s
physical layout.

6. Export Gerber files from your layout program. The Gerber
files are industry-standard files that describe your PCB to
your PCB manufacturer.

7. Send the Gerber files to a PCB fabricator.

8. Receive your freshly manufactured PCBs, populate them
with components and test them out.

At any point in this flow, you might have to go back and
repeat a step if you find an error in a preceding step. Again,
this is similar to software engineering, where you have to go
back to edit and recompile your program if you find that it has
a runtime error. The only difference is that if you take a PCB
design to its completion by ordering boards, and then you find
a design error, you're stuck with a batch of bad boards—you
can’t simply delete your work and recompile.

84EJANUARY 2006 WWW. LINUXJOURNAL.COM

Systems Management:

M Clusters and Supercomputer
Currently, the design tools in the - for Computational Biochemistry

open-source geDA Suite will support

Extraordinarily gifted individuals sought to
provide Linux systems administration and
electronic design task, offering networking support for a rapidly growing
the same power as tools costing | New York—based technology project aimed
' at achieving major scientific advances in
the field of biochemistry and fundamentally
transforming the process of drug discovery.
This research effort is being financed by

almost any kind of low- to mid-level

thousands of dollars.

Origins and History of gEDA

The gEDA Project was originated by Ales Hvezda in 1998. the D. E. Shaw group, an invesiment and
After graduating from the University of New Mexico, he | technology development firm with approx|_
became interested in robotics. Ales wanted to design circuits o . .

for robots using his Linux box, but found that no suitable mately $1 7 billion in aggregate Capltal, and
applications running on Linux existed. Consequently, like so operates under the direct scientific leader-
many open-source developers active in other areas, he felt . . .

the itch to write his own EDA suite. Ales scratched the itch ‘ Shlp of its founder, Dr. David E. Shaw.

by writing a schematic capture program and a rudimentary ; ; :
netlister. He also created a Web site to share his efforts, Successful hires will be rBSDOHSIble for

which he named the gEDA Project, because he wanted to ‘ operational support for and substantial

release his EDA creations under the GPL. ; i ;
Very quickly, a small team of developers joined him and research projects within our Linux and

started patching and adding to the gEDA tools. Others started network (CiSCO, Infiniband) environments,
contributing tools of their own, some of them modest design ! including one of the Iargest Linux clusters
utilities and others major software projects in their own right.) .

In the latter category fall the ngspice Project, which aims to in the world, as well as a masswely para”el
develop an open-source implementation of the popular analog specialized Supercomputer incorporating
simulator SPICE; Gnucap, an analog/digital circuit simulator; « .

and Icarus Verilog, a tool for digital logic generation and simu- | 90-nanometer system on a Chlp ASICs.
lation. Finally, a very important allied program is pcb—the Ideal candidates will have a computer

printed circuit board layout editor.
Because his idea was met with such enthusiasm, and so SCience, engineering, Or SCience deg ree,

many tools allied themselves with the gEDA Project, Ales | extensive knowledge of multiple Linux/

decided to rename his original suite of tools gEDA/gaf, an : .
acronym for gschem and friends. Meanwhile, the term UNIX Operatmg SyStemS’ strong program

gEDA Suite has come to designate the entire ensemble of ‘ ming and scripting ability, and excellent
open-source EDA tools that have allied themselves with the ; ;
gEDA Project. A main distinction between gEDA/gaf and | verbal and erttep skills. We are prepared
the other tools is that the gaf tools tend to be used at the | to reward exceptionally well-qualified indi-
front-end stages of a design, while the other tools are used ‘ viduals with above-market compensation.
in later stages.

Since he started it in 1998, gEDA/gaf has grown to a Please send your resume to

full suite of front-end EDA applications. Besides the core
programs gschem and gnetlist, there are almost two-dozen
contributed utility programs, including an attribute manag- ‘
er, a symbol checker, an refdes generator (or component o

R . Members of the D. E. Shaw group do not discriminate in employment
numberer), symbol generators and file format conversion matters on the basis of race, color, religion, gender, national origin, age,
utilities. Meanwhile, the various back-end tools, such as ‘ military service eligibility, veteran status, sexual orientation, marital status,
pchb, ngspice and Gnucap have also evolved and matured, ‘ disability, or any other protected class.
enabling a variety of different flows adapted to different ‘
|
|

linuxjournal-sa@desrad.deshaw.com.

-

DEShaw & Co

design types. Currently, the design tools in the open-source
gEDA Suite will support almost any kind of low- to mid-
level electronic design task, offering the same power as

tools costing thousands of dollars. |

WWW.LINUXJOURNAL.COM JANUARY 2006E 8!

When discussing the future of EDA
on Linux with my friends and col-
leagues, I like to point out that Sun
Microsystems became the corporate
giant it is today by offering a great
platform for engineering design. Linux
can follow the same path to greatness
because it, too, offers a powerful plat-
form for engineering applications.
Engineers are a natural customer base
for Linux as they are smart, technolo-
gy-savvy and actually want to use
UNIX-native power tools such as
TCL, Perl and Python to automate
their work. Commercial EDA vendors
have just begun to realize the cus-
tomer leverage they can get from the
Linux platform, and they are moving
fast to serve that market. However,
open-source developers recognized the
importance of Linux to electronic
design many years ago, and the matu-
rity of the gEDA Suite is proof of their
early insight.

$chematic Capture—gschem

A good way to understand how gEDA is
used is to examine its individual pieces
in the context of the overall design flow.
The first design step involves schematic
capture—that is, using a specialized
drawing program to draw a schematic
representation of your circuit. The
gEDA Suite’s schematic capture pro-
gram is called gschem.

gschem is usually invoked from the
command line; once started, it opens up
a GUI composed of a drawing window
surrounded by all the menus and buttons
necessary to draw a schematic. gschem,
like any schematic capture program, has
a number of built-in graphical primitives
corresponding to wires, component pins,
resistors, capacitors, transistors and
other items you need to connect when
creating a circuit design. A screenshot of
a typical session with gschem is shown
in Figure 1.

As for electronic devices, gschem
maintains a library of component sym-
bols, which are drawings of individual
circuit elements such as resistors, ICs,
connectors and anything else you might
want to place on your schematic. Each
symbol is stored as an ASCII file; when
you place a component symbol into your
schematic, the corresponding symbol
file is opened up and the information
contained in it is used to draw the sym-
bol on your screen.

Lermperents ngide green bex are nside the dewice package
L7 i
o E
0.407nH *§
v é RI"
9 560 © 3 .
¥ a 2 |77V gi_vsazer
YN, A \1\3 [l Gi.ci 3 =
0.833rH - : : :
Ot sch ! [V N®2 g2 msazes
’ \}\ e | B2 16T : :
R2" - Conraz ,
Cparal (2R3 Qa2,sch! l?aru;~) .
e 560 > o prssor|
.1550F i
T 0.1580F 2% R4 l
& EE
L4 RL4 L&
W' o et . YN T
0.386n A SASar e
i 1 RLE 1
[l
EEn NN % S
Pick | Action | Menu/Cancel ...Dog/Talk/ComplexExample/MSA-2643.5ch Select M

Figure 1. gschem in action. Here is a section of a two-transistor microwave amplifier being drawn in

preparation for SPICE simulation.

Currently, gschem’s symbol library
holds more than 2,000 component
symbols, including symbols for most
common electronic parts. However,
engineers commonly need to create
new symbols for their designs,
because it is likely that not all the
parts they want to use are present in
the symbol library. Therefore,
gschem —like all schematic capture
programs—incorporates a symbol edi-
tor, which allows users to create and
save their own symbols, which they
can then use in any design.

gschem understands electrical con-
nectivity, an important property for
any schematic capture program. That
is, wires (called nets in EDA par-
lance) know that they can connect
only to component pins and other
nets. When two nets are connected
together, gschem knows to draw a
large dot at the connection point, indi-
cating to the user that a connection
exists at that point.

gschem enables engineers to attach
attributes to each component, which is
an important part of creating a design.
For example, if you have a 499-ohm
resistor in your schematic, gschem lets
you place a resistor symbol from the
library, double-click on the resistor and

then attach a value=499 to the resistor
itself. Later, when the design is netlist-
ed, the component’s attributes are writ-
ten into the netlist file and made avail-
able for other programs.

Finally, gschem saves your design
in a well-documented ASCII format.
There are many advantages to ASCII
file formats; readers of Linux Journal
will appreciate that ASCII files can be
parsed and manipulated using script-
ing languages, including Perl and
Python. Scripts facilitate labor-saving
design tasks like automated symbol
generation and schematic merging.
Many proprietary EDA programs do
not use ASCII file formats because
they are interested in locking in cus-
tomers. Open-source EDA advocates
believe that open file formats are a
key superiority of toolsets
like gEDA.

Metlisting—gnetlist

After you have captured your schematic,
the next step in the design flow is to cre-
ate a netlist. gnetlist is the gEDA/gaf
program used to generate netlists from
your schematic files. gnetlist is a com-
mand-line utility; when you run it, it
generates output netlist files and also
displays diagnostic information in your

86E)JANUARY 2006 WWW.LINUXJOURNAL.COM

terminal window.

So what’s a netlist? A netlist is a file holding your design’s
connectivity information in a structured format suitable for
machine processing. Many different types of netlist exist; each
represents a file format optimized for a particular type of sub-
sequent processing. For example, SPICE analog simulators
read files written in the SPICE netlist format, which calls out
connections between analog components, as well as specifies
the values of each component’s parameters, such as a resistor’s
resistance. As another example, netlists used as the input to lay
out programs typically hold information about each compo-
nent’s PCB footprint, which is the metalization pattern on the
circuit board to which the component is soldered, as well as
connectivity information between all component pins.

gnetlist is designed in a unique way. It incorporates a front
end written in C that reads and parses your schematic files.
Once the read-in is complete, gnetlist invokes a back-end
netlist generator written in Scheme. The back end is specific to
the desired output netlist. The back end to use is specified via a
command-line flag when you invoke gnetlist. gnetlist was
designed this way to facilitate easy extensibility. Users who
want to create new netlisters simply need to write a Scheme
program implementing their desired netlister; they don’t need
to learn C or fool around with the internals of reading or pars-
ing schematic files.

At the time of this writing, gnetlist can output more than
20 netlist formats. Among the important netlist types output
by gnetlist is SPICE. The powerful gEDA SPICE netlister
spice-sdb supports the inclusion of vendor SPICE models
into your spice netlist. It has proven very popular with EE
students worldwide, perhaps because it is well documented
in a HOWTO available on the Web. Also, netlisters for sev-
eral different layout tools exist. Finally, gnetlist is also used
for BOM (bill of materials) generation and DRC (design
rule checking) using any of several back ends crafted to
achieve these goals.

Important to PCB design is the question of how to translate
a gschem schematic into a format suitable for layout using the
open-source layout program pcb. Although this can be done
using gnetlist alone, the procedure is complicated. Therefore,
Bill Wilson made a recent contribution to the gEDA Project by
writing gsch2pcb, a C utility that wraps gnetlist and outputs the
correct files to read into pcb for layout. gsch2pcb is a key addi-
tion to the gEDA Suite because it makes the transition from a
gschem schematic to a pcb layout easy, and it also illustrates
the vibrancy of the gEDA on-line community.

tayout—pch
Once the initial layout files are created using gsch2pcb, you
can lay out your design. This involves using a layout editor—a
specialized drawing program to draw metal tracks, compo-
nents, drill holes and other structures onto your circuit board.
The PCB layout tool used with gEDA is called, appropriately
enough, pcb. pcb usually is invoked from the command line;
once running, it presents a drawing window accompanied by
all the widgets and tools necessary to draw your circuit board.
A screenshot of pcb in action is shown in Figure 2.

The history of pcb is quite interesting. It originally was
written by Thomas Nau in 1990 for the Atari ST. Thomas
ported pcb to UNIX in 1994 and used the Xaw (X11) widget

set for its GUL. In about 1998, Harry Eaton took over main-
taining the program, and —among many other contribu-
tions—implemented the ability to output Gerber files. pcb
was placed on Sourceforge.net about two years ago, and it is
currently maintained by Harry, D. J. Delorie (of djgcc fame)
and Dan McMahill. Most recently, Bill Wilson (author of
gsch2pcb) updated peb’s GUI to use GTK+, a very welcome
modernization.

Creating a circuit board layout using pcb, as with any lay-
out editor, involves first placing the component footprints and
then routing the metal connections—called tracks or traces—
between the pins of the footprint. pcb allows you to define the
track width to use, which is important when, for example,
drawing power (usually thick) traces, as opposed to signal
(usually thin) ones.

As for component footprints, pcb supports two different
footprint libraries: a legacy library based upon the M4
macro language and a newer library (newlib), which
defines footprints via an ASCII file defining all graphical
elements composing the footprint, such as metal pads and
rings, drill holes, silk-screened text and so on. When ren-
dering your layout, pcb uses footprints from either library
to draw the footprint required by each component; the foot-
prints used are those called out by the footprint attribute
specified in your gschem schematic.

Since pcb’s newlib defines footprints using an ASCII

{4 bitdefender

SEEY gecurs your every bit

Scaling issues?

www bitdefender.com

WWW. LINUXJOURNAL.COM JANUARY 2006E 87

File Edit Screen Settings Select Buffer Connects Info

Layers

e}

Text § REC | Py

01%
BUF | DEL | ROT

¢
PES

2 il S

R

i PN | LGk

Route Style

@ Signal
) Power
) Fat

£ Skinny

2 45 4R

wiews=component gri

line=15.0 via=40.020.0}

& Zoom Unnamed e e BO.OD 620,00 m
PLE Netist - B {
Net Name ! “Eowﬁ—i :
S
12V_PWR Ré-1 B
Alarm_N
GND H
P5V_Ref =

Operations on selected Net Name"

Select on Layout} Unselect on Layout!

] Disable ali nets for adding rats

O PCELbT - TR | % Close ;
e

[
{Library Group

i R Cose !
[|

i

=5.0 text=100% buffer=#1

Figure 2. A board layout in pcb. The red lines represent metal traces connecting the components on the top

layer of the board; the large blue area corresponds to a ground plane on the back layer of the board. A humber

of component footprints aiso are visible.

Figure 3. A sensor board created using the gEDA Suite. As is evident, pcb can handle a wide variety of

component types.

file format, automated generation of
footprints using scripts is possible. To
this end, another member of the
gEDA community, John Luciani, has
created a large collection of useful
pcb footprints using Perl scripts; both
scripts and the generated pcb foot-
prints are available for free download

from his Web site (see the on-line
Resources).

pcb supports routing on up to eight
layers, meaning that you can draw metal
connections on any of up to eight sepa-
rate layers on the PCB itself. This is
important for enabling high-density
component placements, which are the

norm for modern, compact designs.
Connections between tracks on different
PCB layers are done by running a pair
of tracks to a via, which is a hole drilled
through the PCB and subsequently plat-
ed with metal, thereby electrically con-
necting tracks on one layer with tracks
on another.

Once you’ve completely laid out
your board using pcb, you can gener-
ate Gerber files, which is an industry-
standard representation of your
board’s layout. An assembly drawing,
drill file and pick-and-place file also
are automatically created when you
generate your Gerber files. Send all
these files to any PCB fabrication
house, and soon you will receive pro-
fessional-quality PCBs designed by
you on your Linux box!

A Finished Board

Once your bare PCBs come back, you
either can stuff (assemble) them your-
self or send them to an assembler to
complete the job for you. Shown in
Figure 3 is an example PC board cre-
ated using the gEDA tools. This board
is the same as’that shown in Figure 2.
It is a two-layer board that aggregates
signals from several sensors and
routes them to an A/D module. This
example board is not particularly large
or complex; larger and more-compli-
cated boards are regularly done using
the gEDA tools. However, it does
show a wide variety of component
types: several through-hole connec-
tors, surface-mount and through-hole
devices, a 14-pin DIP in a socket, as
well as holes and other elements. This
illustrates the ability of pcb to handle
many different types of electrical com-
ponents. To see more boards done
using the gEDA Suite, look at the fea-
tured project on the gEDA Web site, or
do a quick Google search. The variety
of possible circuit boards is limited
only by your imagination!

Resources for this article:
www.linugjournal.com/article/2530.08
Stuart Brorson has been an
avid Linux user since 1994
and became a contributor to
the gEDA Project in 2003. By
day, Stuart is a professional
electrical engineer involved in designing
scientific instruments for spectroscopy.

88E JANUARY 2006 WWW.LINUXJOURNAL.COM

