Bob Atkins, KA1GT

MICROWAVE BASICS

This isn’t the column I had originally planned for this month. Instead I’ve written in response to a number of letters from Amateurs who want some very basic information on microwaves. Because it’s easy for me to forget that not everyone knows about the microwave bands, I’ll devote column space this month to an introduction to microwaves. My own personal preference is towards weak signal work, so this may be reflected in my descriptions of microwave activity. However, other modes (like ATV, FM repeaters, and packet) can be found on the bands.

What are “microwaves?” As a working definition, consider microwaves to be electromagnetic waves with a frequency greater than 1000 MHz or a wavelength less than 30 cm. That defines the lower frequency limit, but how high in frequency do microwaves go? The answer to this question is somewhat nebulous; an upper limit would be somewhere around 300 GHz (300,000 MHz). Within this region there’s a subdivision referred to as millimeter waves. It’s the area between 30 and 300 GHz, where the wavelength is less than 1 cm. United States Amateurs have 11 bands allocated above 1 GHz, with a combined bandwidth of 23 GHz (23,000 MHz), so you can see that there’s plenty of room! I’ll define and describe these Amateur bands later. At this point, you just need to know that they exist and have an idea of their size.

Before dealing with any of the technical aspects of microwaves, it may be helpful to try and answer a question which has been posed to me quite frequently. What is the attraction of working on the microwave bands? This is a difficult question and probably has as many answers as there are active microwave Amateurs. The microwave bands provide the challenge of exploration. Many of the bands are sparsely populated; indeed some of them have never been worked at all! There’s a real opportunity to be “first” on a band, make the first contact over a given path, discover a new mode of propagation, or make a real technological contribution to state-of-the-art operation. Even if you don’t do any of these things, there’s a sense of personal satisfaction and achievement in being one of the pioneers on the newly developing bands. The low population of the bands lends itself to other characteristics. For instance, there’s no QRM, and in my opinion the overall operating standards are higher. Listening to some of the poor conduct on the HF bands is a distressing experience. I’ve never heard any discourtesy, deliberate interference, or other undesirable conduct on the microwave bands. The low population also encourages a sense of community and cooperation between those Amateurs who are on the microwave bands. It’s in everyone’s interest to help develop activity — even if it’s just so there’s someone to talk to on the air! In a way, microwave operation is a throwback to the very early days of ham radio — not in technology, but in spirit.

Now let’s move on to some of the technical aspects of microwave operation and see how they differ from those found on the lower bands. Perhaps the most obvious difference is the shorter DX range. While many paths in excess of 1000 km have been worked, such DX is rare. I’ll cover this in more detail later, but for now it’s enough to know that range will be a few hundred kilometers. Such DX work uses antennas with high gain (>20 dBi), and hence a very narrow bandwidth. Consequently, you need to know when the DX is in order to point the antenna with sufficient accuracy to work it! As a result, a lot of microwave work is based on prearranged schedules, or relies on liaison at lower frequencies (often 144 MHz). Much of the activity on the microwave bands is concentrated during contests, local activity nights, or local nets. For example, the Pack Rats group in the Philadelphia area has a 1296-MHz net every Monday night at 9:30 p.m. on 1296.1 MHz.

Because it’s easy for me to forget that not everyone knows about the microwave bands (especially at the higher frequencies); thus there’s a lot of portable operation from mountaintops. As typical microwave TX power is low (maybe 1 watt), and antennas are small (a 3 or 4-foot parabolic dish on 10 GHz is about the practical limit), portable operation is quite convenient. Photos A and B show examples of portable operation on 3456 and 5670 MHz by members of the North Texas Microwave Society.

For those not interested in working DX, the microwave bands offer one other unique feature — bandwidth, and lots of it. For example, the 10-GHz band is 500 MHz wide and ideally suited for high speed digital data links which can rapidly use up bandwidth. Because microwave antennas are highly directional, and DX propagation is difficult, a number of high speed data links can use the same frequencies, even when they are close to each other geographically. Similar factors apply to other wide bandwidth modes.

Who will be the first Amateur to transmit high speed digital HDTV signals on the air? One mode uniquely permitted on the microwave bands is pulse modulation. Though this mode is prohibited on all bands below 1000 MHz, it’s allowed on all the microwave bands except for 1240 to 1300 MHz and 10 to 10.5 GHz.

As I mentioned earlier, there are 11 Amateur microwave allocations. I’ll take a look at each one and try to describe their characteristics. Some of these bands have full or partial ARRL-recommended band plans. In general, narrowband weak signal work takes place on frequencies related to harmonics of 1152 MHz (for historical reasons involving frequency multiplying).

- 1240 to 1300 MHz, or the 23-cm band. This is the most populated...
adjusting the dish.

ing up the rear of the
don 3456 MHz. Elevation is
Nofih
N5JJU5
5760 MHz.

watts aren't uncommon. Antennas
are generally of the Yagi type (or
loop Yagi where 1-wavelength
loops replace the usual
1-wavelength elements like a multi-
element quad). Antennas are
quite small; a 25-element Yagi is
less than 23 cm, but considerable
distances can be worked with low
power under good conditions
(W8YIO's 30-mW, 8-foot dish to
WA8TXT's 200-μW, 4-foot dish.
There were strong signals at 135
km; the path could have been
worked using 2-foot dishes).
The narrowband calling frequency is
2304.1 MHz. Commercially built
equipment is available. The mode
S satellite downlink is in this band
(2401 MHz).

3300 to 3500 MHz, or the 9-cm
band. Activity is very low, but
growing slowly. Conventional
vacuum tubes don't work well at
these frequencies and power
must be generated using solid-
state devices or exotic vacuum
tubes, like traveling wave tubes or
dish systems. Power can still be generated
using such equipment, but almost
all obstructed paths require the
presence of enhanced propagation
modes (ducting) which occur
infrequently. The world record of
1000+ km was made using such
a wideband system. In addition to
wideband systems, there are an
increasing number of narrow-
band systems coming on the air
which use conventional trans-
verter techniques. This is in large
part due to the availability of com-
cial (SSB electronics) trans-
verter components (local oscilla-
tors, transmit and receive mixers).
Kits are available for a few
centuries; built and tested
units cost about double. Power
output is in the 100 to 200-mW
range, and this is enough to work
many obstructed (non line-of-
sight) paths of several hundred
kilometers on a regular basis.
Such paths would be difficult, if
not impossible, to work using
wideband equipment. Most of the
operation is still done from portable
stations on hilltops, but a number
of stations are developing fixed
station capabilities. Several sta-
tions have employed ATV and dig-
ital modes on this band. The

microwave band, and the one
most like the VHF/UHF bands in
its operational characteristics.
Novice operation is permitted
between 1270 and 1295 MHz.
Conventional vacuum tubes
(2C39) can be used to generate
power, and power levels of 100
watts aren't uncommon. Antennas
are generally of the Yagi type (or
loop Yagi where 1-wavelength
loops replace the usual 1/2-
wavelength elements like a multi-
element quad). Antennas are
quite small; a 25-element Yagi is
a little over 6 feet long. Fixed station
operation is common, and a well-
equipped station can expect a DX
range of several hundred kilo-
meters under flat conditions. The
California/Hawaii path has been
worked on this band (3977 km)
using modest power and antennas
(N6CA's 100-watt, 44-element
loop Yagi to KH6HME's 25-watt,
4 by 25-element Yagis). Under
good conditions, distances of up
to 100 km can be worked with
power levels of less than 1 watt.
The narrowband calling fre-
quency is 1296.1 MHz. The ARRL
band plan has allocations for
repeaters, satellite uplinks, ATV,
and digital communications, and
there's activity on all these modes.
Much commercially built equip-
ment is available for this band —
from complete multi-mode trans-
ceivers costing well over $1000, to
low power transverter kits in the
$140 price range.

2300 to 2310 MHz and 2390 to
2450 MHz, or the 13-cm band.
Activity here is much lower than
on 23 cm, though it's growing and
quite well established in some
areas (like North Texas and
Philadelphia). Quite a lot of opera-
tion takes place from fixed sta-
tions. Power can still be generated
with cheap vacuum tubes (2C39s,
$10 surplus) at levels of 20 to 30
watts. Antennas are usually of the
Yagi type, but some parabolic
dishes are in use. Range is less
than 23 cm, but considerable
distances can be worked with low
power under good conditions
(W8YIO's 30-mW, 8-foot dish to
WA8TXT's 200-μW, 4-foot dish.
There were strong signals at 135
km; the path could have been
worked using 2-foot dishes).
The narrowband calling frequency is
2304.1 MHz. Commercially built
equipment is available. The mode
S satellite downlink is in this band
(2401 MHz).

3300 to 3500 MHz, or the 9-cm
band. Activity is very low, but
growing slowly. Conventional
vacuum tubes don't work well at
these frequencies and power
must be generated using solid-
state devices or exotic vacuum
tubes, like traveling wave tubes or
dish systems. Power can still be generated
using such equipment, but almost
all obstructed paths require the
presence of enhanced propagation
modes (ducting) which occur
infrequently. The world record of
1000+ km was made using such
a wideband system. In addition to
wideband systems, there are an
increasing number of narrow-
band systems coming on the air
which use conventional trans-
verter techniques. This is in large
part due to the availability of com-
cial (SSB electronics) trans-
verter components (local oscilla-
tors, transmit and receive mixers).
Kits are available for a few
centuries; built and tested
units cost about double. Power
output is in the 100 to 200-mW
range, and this is enough to work
many obstructed (non line-of-
sight) paths of several hundred
kilometers on a regular basis.
Such paths would be difficult, if
not impossible, to work using
wideband equipment. Most of the
operation is still done from portable
stations on hilltops, but a number
of stations are developing fixed
station capabilities. Several sta-
tions have employed ATV and dig-
ital modes on this band. The

North Texas Microwave Society Expedition
on 3456 MHz. Elevation is controlled by jack-
ing up the rear of the van! WASTNY is seen
adjusting the dish.
ARRL has a 10-GHz contest which takes place every year over two weekends in August and September. Last year the leading station (W6HHC) made 78 contacts with 17 different stations and a best DX of 266 km. Thirty-one stations made contacts in excess of 100 km. Oscar 9 carried a beacon on this band (10.470 GHz). The narrowband calling frequency is 10.361 GHz.

- 24 to 24.25 GHz, or the 1.5-cm band. There isn't much regular operation on this band. The majority of activity involves Gunn oscillator-based systems, though some narrowband transverters have been built. This is the lowest frequency band at which attenuation by the atmosphere (oxygen and especially water vapor) is a significant factor in propagation, amounting to about 0.2 dB/km.

- 47 to 47.2 GHz. This band has no alternative wavelength name. It's the lowest frequency Amateur millimeter wave allocation. Atmospheric attenuation is significant at about 0.4 dB/km. There is Amateur activity, but it's confined to one or two stations.

- 75.5 to 81 GHz. This is the highest frequency band on which I am aware of Amateur activity. Atmospheric absorption amounts to about 0.4 dB/km.

- 119.98 to 120.02 GHz. There's no known Amateur operation at this level. Atmospheric absorption is around 2 dB/km.

- 142 to 149 GHz. No known Amateur operation — there's atmospheric absorption of around 2 dB/km.

- 241 to 250 GHz. No known Amateur operation — atmospheric absorption is in excess of 5 dB/km.

- Above 300 GHz. This is the highest band (if it can be called that, as there is no upper limit). I know of no Amateur RF work in this region, but if you go up high enough in frequency this "band" includes lightwave (laser) communications, where there is activity. Many of these bands are shared by radiolocation (radar) services and you must tolerate interference from them. In practice, this isn't a problem. There are also some nearby radio astronomy bands which are protected from Amateur interference.

How do you get started on the microwave bands? Again, this question has no simple answer; much depends on the individual involved. First, and most important, I'd recommend joining a local group active on microwaves. I can't stress this point too strongly. The group not only provides help and encouragement, but also gives you a number of stations to work. Photo C shows members of the North Texas Microwave Society with their collection of 10-GHz equipment, ready for one leg of the ARRL 10-GHz contest. If a local microwave group doesn't exist, try to find a VHF/UHF group. You'll probably find some microwave knowledge and interest there, even if there's no activity. If you can't find either, try to find another ham interested in developing microwave capabilities. You can share knowledge, help each other with construction, and be certain of someone to work once you get your station built! What can you do if you really can't find any help? If all else fails, write to me and I'll try to put you in touch with someone in your area. If I don't know of anyone, I can put your call and address in this column with a plea for help. If that fails, you'll just have to change QTH! It's also important to read up on the subject. There are some good microwave books covering both theory and practice; I'll list a few at the end of this article.

Where should you start to work? I suggest either 23 cm or 3 cm. If you want to work from a fixed station, and you want to find the most activity, 23 cm is the band of choice. While the microwave characteristics of operation on the band make it somewhat different from lower frequencies, much of the equipment and propagation will still seem familiar to VHF/UHF operators. Activity is high enough to make random contacts possible, particularly in urban areas and during activity periods and contests. Most transverter systems use a 144-MHz IF, so a VHF transceiver or transverter is required. Commercial equipment is widely available and a lot of homebrew designs have been published. Check out the "UHF and Microwave Equipment" chapter of a recent ARRL Handbook for ideas. Of course it's not necessary to start out with a complete transverter system. Operation using a receive converter and tripler from 432 MHz is quite possible using CW and FM. It's not as convenient as a transverter, but is cheaper, easier to build, and quite capable of yielding equal results. A low power 432 to 1296-MHz tripler can be built using 1N914 diodes (10 cents each) and, despite a power output of less than 1 watt, I have personally used such a tripler to work distances of >50 km.

On the other hand, if you like the idea of hilltop/portable operation, and want to try out a band with very different characteristics and equipment from the
lower bands, then 3 cm is the band of choice. You won't make any random contacts on this band, so you must be in contact with at least one other interested Amateur. There are two main modes of operation on 10 GHz. First, there are wideband systems with IF bandwidths of 50 kHz or more, which use free running cavity-stabilized Gunn oscillators and usually operate using FM. Second, there are narrowband systems with IF bandwidths of 3 kHz and less, which use frequency multiplication and mixing from lower frequency crystal-controlled sources and operate using SSB and CW. For low cost experimentation, ATV, or digital operation, the wideband Gunnplexer route is best. You can purchase a complete Gunn oscillator-based transceiver from a commercial source for a few hundred dollars. Alternatively, you can build a basic Gunn oscillator/mixer system from a few pieces of waveguide and a couple of diodes for a total cost of around $20. By combining this equipment with a simple power supply and the IF strip from an FM radio (or even an FM radio itself), you can construct a complete transceiver. Some Amateurs are working on ways to convert surplus Gunn oscillator-based microwave radar detectors, automatic door openers, and intruder alarms to Amateur use at low cost. For serious DX and weak signal work under all conditions, narrowband operation is preferred, though it's more expensive and requires a little more microwave knowledge. Narrowband operation will also make possible many more paths than will wideband operation. Wideband systems are quite capable of DX operation under good propagation conditions. (In fact, the world and United States DX records are held by Amateurs using wideband equipment.)

Equipment is available from a number of suppliers. Take a look through this issue of Ham Radio; I'm sure you'll find advertisements for companies who specialize in equipment for the microwave bands. All should be able to give you information on microwave equipment, and some may even be able to help you find active microwave stations in your area. If you have trouble finding a specific piece of equipment, I may be able to help. However, it's hard to keep up to date, so check out the ads in the Amateur Radio publications first.

I hope this information is helpful to newcomers who are interested in the microwave bands. There isn't room to print any detailed technical information about how to build simple microwave equipment this month. I hope to return to this topic in the future and try to present some simple projects.

Recommended reading

The following publications are recommended for those who want to learn more about microwaves. Some of these books are available from the HAM RADIO Bookstore.

The RSGB VHF/UHF Manual. Lots of information on theoretical and practical aspects of VHF/UHF and microwave operation. Recommended to anyone interested in these bands. (Available from the HAM RADIO Bookstore for $29.95 plus $3.75 shipping and handling.)

The Gunnplexer Cookbook, by Bob Richardson, published by the Ham Radio Publishing Group. A practical book which describes a large number of projects based on the Microwave Associates Gunnplexer system for 10 GHz. A good start for the newcomer to 10-GHz wideband operation. (Out of print.)

The RSGB Microwave Manual. I still haven't seen this one, but on the basis of its authorship it should be a valuable reference. (Available from the HAM RADIO Bookstore for $35 plus $3.75 shipping and handling.)

10 GHz — A Constructional Project, by Chuck Houghton, published by the San Diego Microwave Group and priced at $15. A collection of notes mostly relating to wideband operation on 10 GHz and some information relevant to narrowband work. Lots of detailed construction information with a little bit of theory. Includes test equipment, use of converted intruder alarms, antennas, homebrew and commercial Gunn oscillators, and more. Some components (IF boards, Gunn diodes, etc.) are also available from this group. Contact Chuck, WB6IGP, at 6345 Badger Lake, San Diego, California 92119.

The RSGB Microwave Newsletter Technical Collection. A collection of technical items from the RSGB microwave newsletter. Covers practical design information for the bands 1296 MHz to 24 GHz. Includes information on oscillator sources, antennas, filter design and test equipment. (Out of print.)

The ARRL also publishes a series of conference proceedings from the Central States VHF Society, Microwave Update, and Mid-Atlantic States VHF Conferences. These publications cover all aspects of operation, theory, and practice on the bands from 50 MHz to lightwave. A good way to keep up with the state-of-the-art technical developments by those in the forefront of VHF/UHF and microwave work. Some, but certainly not all, of the material may be a bit advanced for absolute beginners. (Available from the HAM RADIO Bookstore. Check current book flyer and advertisements in this issue for prices.)

And, of course, back issues of Ham Radio. Check out the 5-year cumulative index which appeared in the December 1989 issue. You might also want to read some of the "New Frontier" columns which appeared in QST from 1980 to 1989.

Microwave news

As I've mentioned before, microwave operation often takes place on local nets so operators can have a good idea of when and where they'll find activity. WD4MBK has sent along information on a new 1296-MHz net in the Southeast. Dexter McIntyre, WA4ZIA, of Starfield, North Carolina, has started a net which meets on 1296.090 MHz at 9:30 p.m. every Wednesday evening. The net is held in conjunction with the East Coast 70-cm net which meets on 432.090 MHz at 9:00 p.m., also on Wednesday evenings. On the first night of the 1296-MHz net, there were seven check-ins from five states (Georgia, Florida, Tennessee, South Carolina, and North Carolina). The best DX was 500-mile contact between WD4DW and WA4ZIA. Stations interested in participating in the 1296-MHz net can check into the earlier 432-MHz net, where net control (WD4MBK) will take a list which will be passed on to the 1296-MHz net controller (WA4ZIA). At 9:30, WA4ZIA will call and listen on 1296.090, while listening simultaneously on 432.110 MHz for stations who wish to join the 1296-MHz net. Stations further to the north (Virginia, Maryland, New Jersey, and Pennsylvania) should look for K4CAW (North Carolina). He will call and listen on 1296.090 at 9:30 p.m. for check-ins from the north.

WA4ZIA has also become operational on 3456 MHz with 5 watts to a W3HQT loop Yagi. To eliminate feedback losses, the 3456 transverter and power amplifier are mounted at the antenna on top of his tower. In his first week on the band, he worked W4OJK
NEW! RSOS (Real-Time & Storage Oscilloscopes) From HITACHI

The RSO - its the new solution

View, Acquire, Test, Transfer and Document Your Waveform Data

<table>
<thead>
<tr>
<th>4-Channel, 100MS/s Model</th>
<th>4-Channel, 20MS/s Model</th>
<th>V-6045</th>
<th>V-6025</th>
</tr>
</thead>
<tbody>
<tr>
<td>100MS/s (25MS/s on 4 channels simultaneously), 100MHz, 4kw x 1ch., 2kw x 2ch., 1kw x 4ch.</td>
<td>20MS/s, 20MHz, 2kw x 2ch.</td>
<td>$3,049.00</td>
<td>$2,995.00</td>
</tr>
</tbody>
</table>

NEW! Compact, Full Feature Models

<table>
<thead>
<tr>
<th>Low Cost/High Value Models</th>
<th>Introductory Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20MS/s, 50MHz, 2kw x 2ch.</td>
<td>V-6024 $2,049.00</td>
</tr>
<tr>
<td>20MS/s, 20MHz, 2kw x 2ch.</td>
<td>V-6023 $1,749.00</td>
</tr>
</tbody>
</table>

RSOs from Hitachi feature such functions as roll mode, averaging, save memory, smoothing, interpolation, pretriggering, cursor measurements, plotter interface, and RS 232 interface. With the comfort of analog and the power of digital.

V-212 Hitachi Portable Scopes

DC to 50MHz, 2-Channel, DC offset function, Alternate magnifier function

- V-525 CRT Readout, Cursor Meas. $1,025
- V-523 Delayed Sweep $995
- V-622 Basic Model $895

20MHz Elenco Oscilloscope

$375

- MO-1251
 - Dual Trace
 - Component Tester
 - CRT
 - X-Y Operation
 - TV Sync
 - 2-p-1 Probes

FREE DMM with purchase of ANY SCOPE

<table>
<thead>
<tr>
<th>SCOPE PROBES</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1 65MHz, 1x, 10x $19.95</td>
</tr>
<tr>
<td>P-2 100MHz, 1x, 10x $23.95</td>
</tr>
</tbody>
</table>

Elenco 35MHz Dual Trace

Good to 50MHz $495

- MO-1252
 - High luminosity CRT
 - 1mV Sensitivity
 - 8K Acceleration Voltage
 - 10% Rise Time
 - X-Y Operation + 2 Axis
 - Delayed Triggering
 - Includes 2 P-1 Probes

Digital Capacitance Meter

CM-1550 $58.95

- 9 Ranges
 - 1,2,4,20,200k, 2000, 20000, 200000
 - 5% basic accuracy
 - Zero control with case

Digital LCR Meter

LC-1801 $125

- Measurements:
 - 1kHz, 1kHz, and 1kHz, 1kHz, 1kHz, 1kHz
 - 1kHz, 1kHz, 1kHz, 1kHz, 1kHz, 1kHz
 - 1kHz, 1kHz, 1kHz, 1kHz, 1kHz, 1kHz

Wide Band Signal Generators

SG-9000 $129

- RF Freq, 10kHz-450kHz
- AM Modulation of 1kHz
- Variable RF output

LEARN TO BUILD AND PROGRAM COMPUTERS WITH THIS KITI

INCREASED: All Parts, Assembly and Lesson Manual

- Model MM-8000 $129.00

Starting from scratch you build a complete system. Our Micro- Master trainer teaches you to write into RAM, ROM, and run a 8085 microprocessor, which uses similar machine language as IBM PC. You will the initial instructions to test the 8085 processor to get it started and store these instructions in permanent memory in a 2816 EPROM. Teachers teach you all about input and output ports, computer timers, build your own keyboard and learn how to scan keyboard and display. No previous computer knowledge required. Simple easy to understand instructor teaches you to write in machine language.

ROBOTICS KIT FOR ABOVE (MM-8010) $71.95

C & S SALES INC.

1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (708) 541-0710

15 Day Money Back Guarantee
2 Year Warranty

Prices subject to change

WRITE FOR FREE CATALOG
(95 miles) and K4EJQ (115 miles — path open about 10 percent of the time).

Microwaves and no-code

While it's often difficult to be topical in a column written so far in advance of publication, I'm quite sure that the code versus no-code issue will still be under debate when you read this. On February 16th, the FCC issued a notice of proposed rule making (NPRM) in their docket number 90-55. If you haven't read this document, and are concerned with the future of ham radio, please do so. Basically, it calls for diopping the Novice and Technician class licenses and establishing a Communicator no-code license entitling the holder to all privileges on 222 MHz and above. While the debate may be fierce (there are those who argue with a fervor usually reserved for politics and religion), it seems that some kind of no-code license will be the outcome. You may ask what this has to do with microwaves. Well, all the no-code proposals allow — in fact, are actually targeted towards — newcomers to the bands where more activity is badly needed. Much of the fine work done in the UK on the microwave bands has been through the efforts of Amateurs there who hold no-code licenses. (Indeed, my first license was a UK no-code, though my contributions to microwave activity were negligible!)

The microwave bands are being eyed increasingly by commercial interests as technology makes their use more practical. If we don't occupy the bands we'll have little grounds for objection if we start to lose them. If a no-code license can increase microwave activity, then I welcome it. Even if it doesn't, I don't think a limited no-code license will do harm.

If you feel strongly on the issue of a no-code license, I urge you to send your comments to the FCC (but do read the text of their proposal first). I favor the idea of the Communicator license, but I think dropping the Novice and Technician classes, with their low speed CW requirements, would be a mistake. Whatever your views, make them known to the FCC, and if the eventual outcome is a new group of no-code Amateurs, then let's make sure we welcome them to ham radio on the microwave bands (and learn CW!).

Finally, thanks again to all of those who have taken the time to write. The direction and content of this column depends on your letters, so keep them coming. If you send photos, please be sure to include all the information about the photo on the back. Black and white prints are preferred, but color is okay. Next month I plan to discuss tropospheric scatter propagation on the microwave bands.