INTERFACE YOUR COMPUTER TO THE "POOR MAN'S SPECTRUM ANALYZER"

Add features found in expensive commercial units to your "Poor Man's Spectrum Analyzer"

Since the publication of the "Low-Cost Spectrum Analyzer with Kilobuck Features" by Robert Richardson, W4UCH, in the September 1986 issue of *HAM RADIO*, there have been several follow-up articles about modifying and improving this interesting project. I purchased the tuners and receiver board from WA2PZO and built my own version. I combined the VHF "cable ready" tuner and the VHF/UHF tuner (the VHF section isn't used) in a single enclosure and now have a spectrum analyzer that covers from 1 to 900 MHz in two ranges.

Background

I added a sawtooth generator to produce the frequency sweep described by Joe Carr in the September 1987 issue of *HAM RADIO*. This provided a good oscilloscope display of the frequency spectrum. A turn-counting dial, attached to the multi-turn frequency-control potentiometer, let me set the center frequency accurately after calibrating the dial. The more expensive spectrum analyzers offer additional features like calibrated display (amplitude and frequency), programmable start and stop frequencies, and the capability to plot the spectrum display.

I wanted to add these features to my unit, so I interfaced the "Poor Man's Spectrum Analyzer" to my IBM AT compatible computer and wrote a control program in Microsoft Quick Basic. The interface requires a digitizer board that's mounted inside the computer, a frequency control board mounted with the spectrum analyzer, and an interconnecting cable.

The computer controls user-selected start and stop frequencies through the parallel printer port. After the amplitude versus frequency data has been acquired, it's plotted on the screen. The "print screen" command then plots the data on paper via the printer. Figure 1 shows my spectrum analyzer and the computer interface.

The program lets you select the start frequency in two bands (1 to 500 MHz and 393 to 900 MHz) for use with the two tuners available from WA2PZO. You choose the start frequency, and the program establishes it using a 12-bit D/A converter (DAC). The frequency sweep uses an 8-bit DAC to obtain high resolution over a limited frequency range above the start frequency. The maximum permissible stop frequency is calculated based on the start frequency, and then displayed. After you select the desired stop frequency, the program makes one sweep and displays the plot on the monitor screen.

* IBM AT is a registered trademark of IBM Corporation. Quick BASIC and CW-BASIC are registered trademarks of Microsoft Corporation.
Digitizer board

The schematic for the digitizer board is shown in Figure 4. Integrated circuit U3 is an 8-bit A/D converter that requires no special logic for interfacing with the computer data bus. The output latches of the A/D converter have high-impedance outputs that connect directly to the computer's data bus. The A/D converter only outputs data when addressed by the computer. Potentiometer R1 sets the reference voltage for the converter and thus determines the converter's full-scale setting. U1 and U2 are address decoders wired so an address of 22F hexadecimal (559 decimal) will start the conversion.

DAC operation

While in operation, the computer treats the digitizer board as just another memory location. The board only digitizes the analog input when memory location 22F is addressed. U4 is used as a switch to select the appropriate DAC on the frequency control board when the computer sends frequency control data. When the computer addresses memory location 22B hexadecimal (555 decimal), the DAC-select line is a logic high. When the computer addresses memory location 22D hexadecimal (557 decimal), the DAC-select line is a logic low. More about the DAC-select line later.

Digitizer construction

The digitizer board is mounted inside the computer in one of the expansion slots. Each expansion slot has two receptacles for the edge connectors on the expansion boards. The digitizer board requires just one edge connector and uses only the receptacle
Figure 4. Schematic for the digitizer board.

Figure 5. Layout of the digitizer board.
at the rear of the computer.

I built the board on a perforated prototype board made especially for the computer. These boards are available from most electronics hobby stores and mail-order suppliers for about $25. I used point-to-point wiring. All ICs are mounted in sockets to facilitate repair.

The component layout isn't critical. Figure 5 shows the layout and edge-connector pinouts of the digitizer board. Note that the edge connector is double sided. In the schematic, pin numbers A1 through A31 refer to edge-connector pins on the component side of the board. Pin numbers B1 through B31 refer to edge-connector pins on the solder side. I made a cutout in the board to clear the unused expansion slot receptacle. R1 is mounted near the top of the board. With the computer cover removed, you can adjust R1 while the board is mounted inside the case.

Installing the digitizer board

The analog input and DAC-select line are the only connections external to the computer. I attached the slot cover from the slot in which the digitizer board is installed to the rear end of the board (see Figure 5).
Two small brackets stand the cover off from the board so the cover fits properly against the computer rear frame when the digitizer board is in the machine. I mounted a BNC connector on the slot cover for the analog input and a 1/8-inch phone jack on the slot cover for the DAC-select signal.

Frequency control board

The schematic for the frequency control board is shown in Figure 6. The circuit uses two DACs. A 12-bit DAC decodes the start frequency; an 8-bit DAC sweeps the frequency from the start to the stop frequency.

System logic

Both DACs are controlled through the computer's parallel-printer port. The DAC-select signal generated on the digitizer board chooses the DAC to be addressed by the printer port. When the DAC-select line is a logic high, the 12-bit DAC is selected. Conversely, when the DAC-select line is a logic low, the 8-bit DAC is selected.

The parallel-printer port is an 8-bit port. To control the 12-bit DAC, two 8-bit words — Word 1 and Word 2 — are sent from the computer. Each word contains six bits of data. The remaining two bits identify whether Word 1 or Word 2 is being sent.

Bits D0 through D5 from the parallel-printer port contain the data. Bits D6 and D7 are the word identifiers. The identifier for Word 1 is a logic 0 for bits D6 and D7, respectively; the identifier for Word 2 is a logic 1,0 for bits D6 and D7, respectively.

The 6-bit data of Word 1 from the parallel-printer port are temporarily stored in latches U1 and U2. The data are latched under command of the Word 1 latch signal generated by U3 and U11. The 6-bit data stored in U1 and U2 are then stored in latches U5 and U6. The 6-bit data of Word 2 from the parallel-printer port are stored in latches U6 and U7 under command of the Word 2 latch signal generated by U3 and U11. Thus the 12-bit data required by the 12-bit DAC are stored in latches U5, U6, and U7, following two consecutive outputs from the parallel-printer port. The 12-bit DAC (U9) will then output a current proportional to the 12-bit word present at its inputs. U13 converts U9's output current to an output voltage.

The DAC-select signal is inverted and applied to one input of NAND gates U4 and U8. When the DAC-select signal is low, these gates are activated and the 8-bit data from the parallel-printer port are applied to 8-bit DAC U10's inputs. The computer generates a series of 8-bit words and outputs them to U10 to generate a ramp at U10's output. U13 converts U10's output current to an output voltage.

The voltage-converted outputs of the two DACs are summed by non-inverting amplifier U12. (U12 is an audio power driver intended for use in high-fidelity audio amplifier designs.) Because it can operate with high power supply voltages, I used it in this application as a high-voltage op amp.

The tuners used in the spectrum analyzer require tuning voltages ranging from zero to about 30 volts to cover their wide frequency range. U12's output can produce the required tuning voltages and drive the tuners directly. The op amp doesn't need to deliver a large current because tuning is accomplished inside the tuners with reverse-biased variable-capacitance diodes. Potentiometer R7 is used to calibrate the start frequency.

Control board construction

I built the frequency control board on a perfboard using point-to-point wiring. All integrated circuits are mounted in sockets to facilitate repair. Once again, the board layout isn't critical. The board is mounted inside the spectrum analyzer enclosure. I added switch S2 in series with the tuning inputs of the two tuners so I could select manual (internal) or computer (external) control. See Figure 1 for details.

Interconnecting cable

The computer and the frequency control board in the spectrum analyzer are connected via a 10-conductor cable. I mounted a 25-pin D-type connector on the spectrum analyzer enclosure for connection to the cable. One end of the cable has a 25-pin D-type connector compatible with the one on the spectrum analyzer. The computer end of the cable has two connectors. One is a 25-pin D-type compatible with the computer's parallel-printer port. The other connector is a 1/8-inch phone plug. This plug carries the DAC-select signal and fits into jack J2 on the computer slot cover mounted on the digitizer board. The pinouts for the D-type connectors on the spectrum analyzer and computer end of the cable are shown in Figure 7.

Computer program

I originally wrote the computer program in Microsoft Quick BASIC for use with an EGA monitor so I could tap into the high-resolution graphics capability. I've included line numbers on all lines of the code (Quick BASIC doesn't require line numbers for all lines) so the program can run with the more
common BASIC versions like Microsoft GW-BASIC.

The program runs much slower in GW-BASIC. This means the frequency sweep generated by the computer will be slower, and you may miss some of the intermittent signals you want to “catch” in the frequency spectrum. For the most part, the speed of the BASIC program or the computer isn’t a critical parameter.

I first wrote the program for use with parallel-printer port 2 (LPT2), with the spectrum analyzer connected to LPT2 and the printer connected to parallel-printer port 1 (LPT1). Using this arrangement eliminates the need to switch connections between the printer and spectrum analyzer at the parallel-printer port when I want a hard copy of the spectrum plot. I also have a version for use with LPT1 if you have only one parallel printer port.

The computer program contains about 300 lines of code and is too long to be included with this article, but I'll send you a copy of the program. My address appears at the beginning of the article. A self-addressed stamped envelope would be appreciated. I can also supply the program on a diskette for $5. Please state whether you want the LPT1 or LPT2 version.

A flowchart for the computer program is shown in Figure 8. The program begins with the establishment of four arrays. Arrays A and B contain the digitized data. The digitized spectrum analyzer data are stored immediately upon acquisition in Array A. Array B stores the digitized data after it's scaled to an equivalent dBm input to the spectrum analyzer. Arrays A and B both contain a maximum of 256 elements, with each element corresponding to a sample of spectrum analyzer's detected output. Because an 8-bit DAC is used for the fre-
common BASIC versions like Microsoft GW-BASIC.

The program runs much slower in GW-BASIC. This means the frequency sweep generated by the computer will be slower, and you may miss some of the intermittent signals you want to "catch" in the frequency spectrum. For the most part, the speed of the BASIC program or the computer isn't a critical parameter.

I first wrote the program for use with parallel-printer port 2 (LPT2), with the spectrum analyzer connected to LPT2 and the printer connected to parallel-printer port 1 (LPT1). Using this arrangement eliminates the need to switch connections between the printer and spectrum analyzer at the parallel-printer port when I want a hard copy of the spectrum plot. I also have a version for use with LPT1 if you have only one parallel printer port.

The computer program contains about 300 lines of code and is too long to be included with this article, but I'll send you a copy of the program. My address appears at the beginning of the article. A self-addressed stamped envelope would be appreciated. I can also supply the program on a diskette for $5. Please state whether you want the LPT1 or LPT2 version.

A flowchart for the computer program is shown in Figure 8. The program begins with the establishment of four arrays. Arrays A and B contain the digitized data. The digitized data is stored immediately upon acquisition in Array A. Array B stores the digitized data after it's scaled to an equivalent dBm input to the spectrum analyzer. Arrays A and B both contain a maximum of 256 elements, with each element corresponding to a sample of spectrum analyzer's detected output.

Because an 8-bit DAC is used for the fre-
Installation and alignment

Once you’ve assembled the digitizer board, carefully inspect it for any wiring errors, shorts, or bad solder joints. Install the digitizer board in the expansion slot desired. Adjust potentiometer R1 on the digitizer board to a point approximately midway between the extremes of its range.

Digitizer alignment

To align the digitizer board, you must apply +2.5 volts DC to its analog input. I used a 12-volt DC power supply and a potentiometer connected as a voltage divider between the power supply output and ground. The potentiometer’s wiper was connected to the BNC connector on the digitizer board through a coaxial cable. An oscilloscope was used to measure the voltage at the wiper precisely. To avoid loading down the circuit, use a high-impedance device like an oscilloscope or digital voltmeter (DVM) to make this measurement. Verify that the voltage is about +2.5 volts before connecting this voltage to the computer.

Computer interface

Turn on the computer and load the spectrum analyzer program into BASIC. Connect the test voltage to the BNC-input connector on the digitizer board and readjust the voltage for precisely +2.5 volts DC.

Run the spectrum analyzer program. The words “PLEASE WAIT” should appear on the screen. The computer is now filling Arrays C and D with the proper data for the 12-bit DAC. This takes a little time, especially if you’re using GW-BASIC. The wait message appears to let you know that the computer is working.

In a few moments, the screen prompts you to select the desired frequency range. Type 11 to choose the VHF range. The computer now prompts you for the desired start frequency. Type 100. The computer asks you for the desired stop frequency. Type 132, and a graph will appear on the screen. After a pause, a horizontal line corresponding to the input voltage level will be plotted on the graph. Below the graph, you’ll again see a computer prompt for the desired start frequency.

The test voltage of +2.5 volts DC corresponds to a −60 dBm input to the VHF tuner. If the line that was plotted on the graph isn’t drawn at the −60 dBm mark, readjust R1 on the digitizer board and again select 100 as the start frequency and 132 as the stop frequency. Observe the new plot. Repeat this operation until the line is plotted at the −60 dBm mark.

Frequency-control board alignment

Remove the test voltage from the input to the digitizer board and connect the spectrum analyzer detected output to the digitizer input board. Connect the 10-conductor cable from the spectrum analyzer to the computer parallel-printer port. Next, connect the DAC-select line to the digitizer board’s 1/8-inch phone jack. Configure the spectrum analyzer so that the frequency control board controls the VHF tuner’s frequency, and the output of the VHF tuner is connected to the receiver board. With my spectrum analyzer, all I have to do is select low range (VHF) and external control with the two toggle switches, S1 and S2, and reconnect the antenna to the VHF tuner (see Figure 1). Adjust R7 on the frequency-control board to the center of its range.

Perform the frequency-control board alignment using a known frequency as an input to the spectrum analyzer. Try the frequency of an FM commercial radio station. At the prompt for select start frequency, type in the frequency of a local FM station. (I used 89.3 MHz.)

At the select stop frequency prompt, type in the maximum stop frequency that the computer calculated and displayed. After a pause, you should see a spectrum plot displayed on the screen. When the plot is complete, listen to the audio output from the spectrum analyzer. The spectrum analyzer will be “resting” on the start frequency that you selected.

If your R7 setting is correct, you should hear the radio station in the speaker. If you don’t hear the proper station, readjust R7 on the frequency-control board. Align the frequency-control board using several different stations as your start frequency. Adjust R7 so you can hear the majority of them to some extent.

The 12-bit DAC used for the start frequency control generates only discrete voltages. It won’t be able to position the start frequency precisely on all selected start frequencies. Consequently, you won’t hear all the FM stations that you use for calibration clearly. If R7 is properly adjusted, the frequencies 89.3 MHz and 96.1 MHz are easy to hear when used as start frequencies. Use these frequencies for calibration, if they are available in your area.

As an alternative, you can use a signal generator as the signal source, adjusting R7 so the spike for the generator frequency is plotted at the left of the graph. If you choose this approach, you should also try several different frequencies. Adjust R7 for
the best compromise.

That's all you have to do to align the digitizer and frequency-control boards.

Now, at the start frequency prompt, type 0. The computer asks you to select the desired frequency range. Type 0 to end the program.

Conclusions

I've found that these modifications provide an interesting versatility to WA2PZ0's spectrum analyzer! While the computer

interface doesn't make the “Poor Man's Spectrum Analyzer” equal in performance to more expensive laboratory grade equipment, it does allow some reasonably accurate measurements.

References

Parts List: Digitizer Board

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>22-μF tantalum</td>
</tr>
<tr>
<td>C2</td>
<td>100-pF disc ceramic</td>
</tr>
<tr>
<td>C3</td>
<td>0.001-μF disc ceramic</td>
</tr>
<tr>
<td>C4</td>
<td>0.01-μF disc ceramic</td>
</tr>
<tr>
<td>J1</td>
<td>BNC-type connector (chassis mount)</td>
</tr>
<tr>
<td>J2</td>
<td>1/8-inch phone jack (chassis mount)</td>
</tr>
<tr>
<td>R1</td>
<td>10-k, 15-turn potentiometer</td>
</tr>
<tr>
<td>R2</td>
<td>18 k</td>
</tr>
<tr>
<td>R3</td>
<td>47 k</td>
</tr>
<tr>
<td>R4</td>
<td>1.5 k</td>
</tr>
</tbody>
</table>

(All fixed resistors 1/4-watt, 10 percent)

- U1: ADC0804C (8-bit analog-to-digital converter)
- U2: 74LS02 (quad 2-input NOR gate)
- U3, U4: 74LS138 (1-of-8 decoder/demultiplexer)

Parts List: Frequency Control Board

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>0.05 μF disc ceramic</td>
</tr>
<tr>
<td>R1</td>
<td>1.5 k</td>
</tr>
<tr>
<td>R2</td>
<td>56</td>
</tr>
<tr>
<td>R3, R4, R5</td>
<td>5.6 k</td>
</tr>
<tr>
<td>R6</td>
<td>18 k</td>
</tr>
<tr>
<td>R7</td>
<td>10-k, 15-turn potentiometer</td>
</tr>
<tr>
<td>R8</td>
<td>560 k</td>
</tr>
<tr>
<td>R9</td>
<td>100 k</td>
</tr>
<tr>
<td>R10</td>
<td>47 k</td>
</tr>
<tr>
<td>R11</td>
<td>100 k</td>
</tr>
</tbody>
</table>

(All fixed resistors 1/4-watt, 10 percent)

- U1, U2, U5, U6, U7: 74LS75 (4-bit bi-stable latch)
- U3, U4, U8: 74LS50 (quad 2-input NAND gate)
- U9: DAC1222 (12-bit binary multiplying D/A converter)
- U10: DAC0806LCN (8-bit D/A converter)
- U11, U14: 74LS04 (hex inverter)
- U12: LM391 (audio power driver)
- U13: LM358 (low power dual op amp)
AVAILABLE NOW!

1991 RADIO AMATEUR CALLBOOKS

NORTH AMERICAN EDITION

Fully updated and edited to include all the latest FCC and foreign government call signs and addresses to Hams in North America. Includes plenty of handy operating aids such as time charts, QSL bureau addresses, census information and much more. Calls from snowy Canada to tropical Panama. Now is the time to buy a new Callbook when you'll get the most use out of your investment. © 1990.

CB-N91Softbound $29.95

INTERNATIONAL EDITION

QSLs are a very important part of our hobby. All sorts of awards, including the coveted DXCC, require confirmation of contact before the award can be issued. Of special interest, addresses are being added daily for Hams in the USSR and other countries. While by no means complete, it's a start and will be of tremendous help in getting QSLs. Handy operating aids round out this super book value. © 1990.

CB-N91Softbound $29.95

BUY 'EM BOTH SPECIAL

CB-N91 REG. $59.90 ONLY $54.95 SAVE $5.00

THE 1991 ARRL HANDBOOK

Revised and updated with the latest in Amateur Technology, now is the time to order your very own copy of the world famous ARRL HANDBOOK. In addition to being the definitive reference value for your Ham shack, there are plenty of projects for every interest in Amateur Radio -- from antennas for any application to the latest state-of-the-art projects -- you'll find it all in the 1991 HANDBOOK. Over 1100 pages. © 1990.

AR-HB91Hardbound $24.95

Shipping $3.75 to US and Canadian Addresses. All others FOB Greenville, NH

ORDER TOLL FREE

(800) 457-7373

CO's HR Bookstore Greenville, NH 03048
(603) 878-1441 FAX (603) 878-1951

NEW BOOKS

WEATHER SATELLITE HANDBOOK New ARRL 4th Edition
By Ralph Taggert, WB6DOT

Taggert has long been recognized as one of the foremost experts on weather satellite picture reception. This new edition of his famous book has been updated and expanded to include all the latest information on satellite picture reception. Subjects covered include a complete section on what satellites are in orbit, everything you'd want to know about what kind of antenna, receiver, video formats and displays to use, plus much more! You get all the information you need to get your satellite system up and running. © 1990

4th Edition
AR-WISH

Softbound $19.95

PRACTICAL ANTENNA HANDBOOK
By Joe Carr, K4IPV

A comprehensive blend of theory and practical antenna applications, this new book by noted author Carr, a valuable book to have on hand. Features detailed analysis and construction information for all kinds of antennas, an explanation of the secrets of radio propagation, theory and use of transmission lines, a comprehensive overview of the radio spectrum as well as 22 BASIC programs for designing antennas. Learn from an expert -- get this book today. © 1990 1st edition 448 pages

T-3270

Softbound $21.95

Call TOLL FREE

(800) 457-7373

CO's HR Bookstore Greenville, NH 03048
(603) 878-1441 FAX (603) 878-1951

PHASE enclose $3.75 shipping and handling