A HIGH-PERFORMANCE 2-METER TRANSVERTER

Modular approach makes construction and modification easy

By Bob Lombardi, WB4EHS, 1874 Palmer Drive, Melbourne, Florida 32935

It seems that many VHF/UHF enthusiasts say they became interested in this part of the spectrum after having worked just about all of the DX available on HF. This wasn't the case for me. The possibilities of 2-meter operation appealed to me on their own merits. There is OSCAR, moonbounce, meteor scatter, SSB, CW, and a host of propagation modes to explore.

My interest in these modes of communication led me to review their requirements. I realized that commercial rigs available at the time didn’t have the two main features I was looking for — a low noise figure and a selectable CW filter. Like many before me, I decided to build a transverter for my HF rig.

These were my design goals:
- low noise figure, in keeping with the state of the art;
- output power in the range of 5 watts, with excellent linearity (third-order IMD at least 30 dB down);
- good rejection of a nearby NOAA weather radio relay (at least 40 dB down);
- moderate gain (enough to overcome the front end noise of the HF rig);
- good dynamic range.

I adopted a modular design approach advocated by Joe Reisert, W1JR, and others. I like this design because it gives me the ability to get sections working and tied together quickly. This, in turn, makes the project seem less like a constant uphill battle. Also, the modular method with its replaceable sections is a great benefit when you come up with a better design. The block diagram of the transverter appears in Figure 1.

Receive strip

The receive side input (Figure 2) is a GaAsFET low-noise amplifier (LNA) that uses a circuit similar to Reisert’s¹ and to those in general FET applications notes. The device is a single gate MGF-1402 made by Mitsubishi; it’s available from several sources.* The 10-k resistor on the input bleeds off static buildup. Any value around 10 k will work, as long as you use a carbon composition resistor. (I had a persistent and elusive oscillation; it was caused by the metal film resistor I was using!) I used diodes around the regulator to protect against regulator latch-up or inductive spikes from the T/R relay. The amplifier had a noise figure of under 0.75 dB and a gain of 23 dB, as measured on an Ailtech noise figure meter and HP network analyzer.

The filter (shown in Figure 3) was described in an earlier article.² I wanted the filter to be narrowband enough to pass all 4 MHz of the band, and still provide over 40 dB of rejection at 162.55 MHz. It provides nearly 55 dB, at a cost of about 5 dB of insertion loss. At this point, however, there was gain to burn to meet the design goals of about 10 dB of gain in the complete transverter.

A 116-MHz overtone crystal oscillator provides the LO function for both sides of the transverter (Figure 4). The oscillator is a common base design, largely based on Reisert.³ The output was measured at +13 dBm, allowing the use of a two-way power splitter to provide LO to both mixers.

The receive mixer is a Mini-Circuits SRA-1000 (see Figure 5). It is essentially the same as their SRA-1 in this application. The IF output goes into a diplexer and 24 to 34-MHz bandpass filter. In band, the diplexer (the parallel-resonant circuit and 51-ohm resistor) presents an open circuit, and no signal flows in the resistor. As the frequency changes the reactive components tend to short out the tank circuit, allowing signal to flow into the termination and to ground. The mixer sees the 51-ohm resistor at these frequencies.

The receiver input stage is largely responsible for determining the system noise figure, and the noise figure is degraded by any losses in front of it. If you’re new to the field of low-noise design, this explains what must seem like the unconventional design of the transverter; i.e., the amplifier ahead of the filter. (This is a common design technique in microwave receiver

*See parts sources at the end of the article. Ed.
design, like TVROs.) To minimize the effects of losses in front of the amp, I used foam-flex (hardline) coax as the feedline, with short flexible jumpers of RG-214/U where required.

Other hams have told me on the air that my low noise figure is unnecessary in 2-meter SSB because ground noise predominates. While this may be true, my idea all along was that receiver noise shouldn’t be a limiting factor if I wanted to swing my antennas up for OSCAR — or anything else I might try. When you add that to the high intercept point of the GaAsFET front end, and the resulting improvement in dynamic

Ham Radio/July 1989 69
Details of the BP (bandpass) filter on the receive line.

Local oscillator using a 116-MHz overtone crystal.

Parts list

CAPACITORS
Electrolytic or tantalum
1.5 µF/15 volts 1 each
2.2 µF/15 volts 1 Radio Shack 272-1435
4.7 µF/15 volts 3 272-1024
10 µF/25 volts 1 272-1025
330 µF/16 volts 1 272-1030 (470 µF)
Ceramic, monolithic dipped, 50 volts (Z5U or X7R)
68 pF 2
470 pF 1
0.001 µF 20
0.01 µF 10
0.1 µF 1
Ceramic, monolithic dipped, 50 volts (COG or NPO)
3.9 pF 4
4.7 pF 1
10 pF 8
27 pF 1
39 pF 1
47 pF 2
270 pF 2
Trimmers—all values in pF
0.25-2.5 Teflon 4 BP filters
0.5-5 glass/air 1 GaAsFET amp
1-5 pF ceramic 5
2-20 ceramic 5

RESISTORS
1/4-watt carbon composition, 5 percent
51 ohm 1
100 ohm 1
200 ohm 2
1 k 2
1.5 k 1
4.7 k 1
5.6 k 1
10 k 4
100 k 1
1/2-watt carbon composition, 5 percent
100 ohm 2
750 ohm 1
1-watt carbon composition, 5 percent
62 ohm 2
68 ohm 1
Receive and transmit mixer schematic.

2-watt carbon composition
Any value over 100 k (used as coil form)
1/8-watt carbon composition, 5 percent
18 ohm 2
300 ohm 4
68 ohm 1
100 ohm 2

SEMICONDUCTORS
Diodes
1N4148 general purpose 6 (widely available)
1N4004 rectifier 1
1N757 9-volt zener 1
1N751 5-volt zener 1
Transistors
2N2222 NPN 1
2N3553 NPN 1 RF Parts Company
2N5109 NPN 1 RF Parts Company
2N5170 NPN 1 RF Parts Company
MRF-1402 GaAsFET 1 RF Parts Company
MRF-134 powerFET 1 RF Parts Company

MISCELLANEOUS PARTS
Ferrites
FT-23-63 1 Amidon
Beads, Ferroxcube type 4A6 4 Amidon (cross-reference)
Two-hole balun (for RFC on driver assembly)
BLN 43-2402 3 Amidon
Ferroxcube VK200-19/4B 1 Amidon (cross-reference)
TOROIDS
T44-6 2 Amidon
T20-10 2 Amidon
Note: The exact ferrite bead used in most cases isn’t critical. It should present several microhenries of inductance at the operating frequency.

OTHER PARTS
SBL-1 mixer 1 Mini-Circuits, others
SRA-1 1
TSC-2-1 power splitter 1 Mini-Circuits, others
116-MHz fifth overtone crystal 1 ICM
5-k multiturn pot 1 Radio Shack
T/R power switch relay 12 volt 1 Radio Shack
T/R coaxial relay 12 volt 1 Communications Concepts
RF coaxial connectors 15 SMA female (as required)
Coaxial jumpers (as required)
Boxes (as required)
Feedthrough capacitors (as required, 1 per box)
100 H molded chokes 2

OTHERS
MWA-130 amplifier modules 2 Communications Concepts
7BL05 5-volt regulator 1 (widely available)
7BL08 or 7BM08 8-volt regulator 1 (widely available)
LM-311 comparator 1 (widely available)
range, the GaAsFET still seems the most logical choice.

My initial test of the receive side yielded good results. While conducting tests with WA4GHK (15 miles south), it was easy to copy K4DZP in Miami (over 160 miles south) — despite my makeshift indoor antenna.

Transmit chain

The transmit portion of the transverter presents its own problems; the biggest is linearity. A rule of thumb for diode ring mixers (like the SBL-1 used here) is to have the input signal at least 10 dB below the LO for best linearity (see Figure 5). Because one of my design goals was to achieve very good linearity from the transmitter, the first thing I did was pad the input drive (+3 dBm) from my HF rig. The resulting level was about –7 dBm, 14 dB lower than the LO drive. Since all the pads were made with the closest value resistors, and the mixer itself contributes loss, I measured the conversion loss of the transmit mixer. It was 17.7 dB.

The pre-driver stage in Figure 6 is supposed to recover all of the signal lost in the conversion, providing enough filtering to remove significant power on the image frequency, and reduce LO feedthrough. I used MWA-130 amplifiers, modular 50-ohm in-and-out devices in TO-5 cans, because they are easy to use and were available on a surplus board that I scavenged. The power out at this point is 4 mW (+6 dBm).

The actual drivers are two transistors, a 2N5109 and a 2N3553 (see Figure 7). The first device is a well-known VHF linear transistor; the second is a 28-volt, TO-5 can device capable of 2 watts if run class C. This was originally to have been a three-transistor strip with 1 watt out from a third 2N3553, but I was never able to get them to more than 500 mW and still remain linear with a 12-volt supply. I tried many variations of bias circuits, matching networks, and pc layouts. The two-device strip I settled on produces 18 dB of gain, or about 250 mW out.

The final amp is a Motorola MRF-134 TMOS powerFET that delivers just over 4 watts out and a clean, linear signal (third-order intermod down just over 30 dB). See Figure 8 for details.
New from ARRL

Following the hard-cover style of Transmission Line Transformers, and Yagi Antenna Design, Antenna Impedance Matching is written with the advanced amateur, antenna design engineer and technician in mind, but even if you don't have any special expertise you'll be able to develop very sophisticated systems. This is probably the most comprehensive book ever written on the use of Smith Charts™ in solving impedance matching problems. This 224-page book is of importance to those who want to maximize antenna effectiveness. A properly matched antenna as the termination for a line minimizes feedline losses, and power can be fed to such a line without the need for a matching network at the line input. Antenna Impedance Matching is a "must" for the antenna designer and serious amateur. The price is $15, please add $3.50 for shipping and handling.

THE AMERICAN RADIO RELAY LEAGUE, INC.
225 MAIN STREET
NEWINGTON, CT 06111

EVERY ISSUE of
HAM RADIO
now available on microfiche!

The entire run of Ham Radio Magazine (March, 1968 thru last year) is ready to ship to you in one, easy to use format.

Our 24x microfiche is easy to read and very compact. We offer a hand held reader for $75, and a desk model for $200. Libraries have these readers.

As a bonus, you will receive Ham Radio Horizons (3/77 thru 12/80) free.

Everything is included, front cover to back - ads too!
Annual updates will be offered for $10.
Send $185 payment (visa/mc accepted) to:

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23111
703/894-5777 visa/mc 800/282-5628
Antennex

"The Magazine For Antenna Experimenters"

IF YOU -

- Have a lousy mobile signal on all bands?
- Need an inexpensive beam for 10 meters?
- Unsure about using verticals or horizontals?
- Need a low noise antenna for 160 meters?
- Want to design an antenna just for you?
- Need a program for design and plotting?
- Need to solve a unique problem?
- Know the best antenna for hamsats, etc.?
- Need a disguised mobile antenna?
- Want a cheap automatic coupler system?
- Just want to learn more about antennas?

THEN SUBSCRIBE TO - antennex-

12 MONTHLY ISSUES is only $11.97 for

antennex

PO. Box 8995 Dept. 19
Corpus Christi, TX 78412

Electronic Repair Center

Servicing

Amateur

Commercial Radio

The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing “Hams” for 30 years, no rig too old or new for us.

HAMTRONICS, INC.

4033 Brownsville Road
Trevose, Pa. 19047

215-357-1400

Antenna

2 METER AMPLIFIERS • ATV CONVERTERS

Discover the World of Fast Scan Television:

<table>
<thead>
<tr>
<th>Type</th>
<th>Freq. Range (MHz)</th>
<th>N.F. (dB)</th>
<th>Gain (dB)</th>
<th>1 dB Comp. (dBm)</th>
<th>Device Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P28VD</td>
<td>26-30</td>
<td><1.1</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P50VD</td>
<td>50-54</td>
<td><1.3</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P50VDG</td>
<td>50-54</td>
<td><0.5</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P144VD</td>
<td>144-148</td>
<td>1.5</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P144VDG</td>
<td>144-148</td>
<td>1.0</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P50VD</td>
<td>50-54</td>
<td><0.5</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P220VD</td>
<td>220-225</td>
<td>1.2</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P220VDG</td>
<td>220-225</td>
<td>1.2</td>
<td>20</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P432VD</td>
<td>432-450</td>
<td>1.0</td>
<td>15</td>
<td>0</td>
<td>Bipolar</td>
<td>$35.95</td>
</tr>
<tr>
<td>P432VDA</td>
<td>432-450</td>
<td>1.1</td>
<td>17</td>
<td>-20</td>
<td>Bipolar</td>
<td>$48.95</td>
</tr>
<tr>
<td>P432VDG</td>
<td>432-450</td>
<td>0.5</td>
<td>16</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
</tbody>
</table>

** Inline (RF Switched)**

<table>
<thead>
<tr>
<th>Type</th>
<th>Freq. Range (MHz)</th>
<th>N.F. (dB)</th>
<th>Gain (dB)</th>
<th>1 dB Comp. (dBm)</th>
<th>Device Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP28VD</td>
<td>28-30</td>
<td><1.2</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$59.95</td>
</tr>
<tr>
<td>SP50VD</td>
<td>50-54</td>
<td><1.4</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$59.95</td>
</tr>
<tr>
<td>SP50VDG</td>
<td>50-54</td>
<td><0.6</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$109.95</td>
</tr>
<tr>
<td>SP144VD</td>
<td>144-148</td>
<td>1.1</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$67.95</td>
</tr>
<tr>
<td>SP144VDG</td>
<td>144-148</td>
<td>1.1</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$109.95</td>
</tr>
<tr>
<td>SP220VD</td>
<td>220-225</td>
<td>1.9</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$59.95</td>
</tr>
<tr>
<td>SP220VDG</td>
<td>220-225</td>
<td>1.3</td>
<td>20</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$109.95</td>
</tr>
<tr>
<td>SP432VD</td>
<td>432-450</td>
<td>1.9</td>
<td>15</td>
<td>0</td>
<td>Bipolar</td>
<td>$62.95</td>
</tr>
<tr>
<td>SP432VDA</td>
<td>432-450</td>
<td>1.7</td>
<td>17</td>
<td>-20</td>
<td>Bipolar</td>
<td>$79.95</td>
</tr>
<tr>
<td>SP432VDG</td>
<td>432-450</td>
<td>0.5</td>
<td>16</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
</tbody>
</table>

Advanced Receiver Research

Box 1242 • Burlington, CT 06013 • 203 582-9409

Catalogs

HAM

- Transceivers
- HF-VHF-UHF
- Antennas
- RTTY-Packet
- Receivers
- Books & Accs. Only $1 Postpaid

SWL

- Receivers
- Antennas
- Tuners
- Headphones
- RTTY-FAX
- Books & Accs. Only $1 Postpaid

Send to:

Universal Radio
1280 Alda Drive Dept. HR
Reynoldsburg, OH 43068
Final amplifier using an MRF-134.

All design decisions are tradeoffs. For example, using the MRF-134 created the need for a small 24-volt supply — but I gained advantages in other areas. First, the FET is guaranteed to deliver rated power into a 30:1 VSWR at any phase angle (no delicate device here!); second, it's capable of more gain in one package than a bipolar; and last, it worked the first time I tried it — a very enjoyable experience after my trials and tribulations with the '3553s.

The circuit is taken largely from the Motorola RF Data Book applications note. Component changes are based on availability and personal preferences. In any RF power amplifier it's essential to keep the ground leads of the device as close as possible to ground on the board. I connected top and bottom foil with a strip of copper shim stock at the point where the source leads leave the device package. The FET itself is on an extremely overrated heat sink; after extended key down periods everything remains at ambient temperature.

The output filter in Figure 9 is an elliptical low-pass design. The two parallel resonant circuits are tuned to 313 and 487 MHz with a grid-dip meter; the other caps are adjusted for minimum insertion loss while you watch output power on a wattmeter. My version had a measured insertion loss of under 0.2 dB.

I used a simple comparator on the PTT line from the HF rig to do the T/R switching (see Figure 10). The relay is DPDT. It switches 12 and 24 volts to the transmit amplifiers and 12 volts to the antenna relay (a Dow-Key relay I picked up at a local hamfest). The relay provides over 40 dB of isolation during transmit; the GaAsFET sees -4 dBm, well within its capabilities. (I leave it powered on continuously.) This relay should be adequate at power levels of up to 100 watts.

Construction and alignment

This is a sophisticated project and you'll need building experience. If you've had experience with other RF circuitry, you'll find it presents few special challenges. I used pc boards for the GaAsFET RF amplifier, filters, and all transmit stages. The LO, mixers, and the T/R switching boards are built "dead bug" style; they function quite well that way. If you are an experienced builder who uses point-to-point techniques at these frequencies, you may want to use that method. I used SMA connectors on small-diameter coax (RG-188) for signal interconnects. You may prefer to use BNCs. Likewise, I used pc board material for housing circuits — you may prefer commercially made enclosures.

I've already mentioned the need to keep grounds short on the final amplifier; the same holds true for the driver stages. This is the strongest argument for using pc boards for these stages. The emitters of the driver transistors are grounded immediately, with minimal lead length.

There are no "peculiarities" of alignment. Align the filters separately, tuning them as desired. It's best to align the transmit stages with a spectrum analyzer. Tune the drivers for best output while observing third-order intermod. This will not occur at maximum power out. The same applies to the final amplifier.

Ideally, the GaAsFET should be aligned with noise figure instrumentation. If that isn't available, tune for maximum noise level by ear, and then detune slightly. The optimum noise fig-
MICROWAVE ANTENNAS AND EQUIPMENT
- Loop Yagi + Power Dividers + Linear Amplifiers + Complete Arrays + Microwave Transverters + Gallex FFT Preamps
- TROPO + EME + Weak Signal + OSCAR + 1022 - 1269 GHz
- 2304 + 2400 + 3456 MHz
2345 LY 45el loop Yagi 1296 MHz 20dB S9
3351 LY 35el loop Yagi 2304 MHz 20dB S9
3351 LY 35el loop Yagi 902 MHz 15dB S9
Above antennas assembled and tested. Kits available.
Add 50 UPS SHS, $114 West of the Mississippi.

MICROWAVE LINEAR AMPLIFIERS SSSB, ATV, REPEATER, OSCAR
2316 PA 1w in 18w out 1240-1300 MHz 13.8V $265
3351 PA 1w in 35w out 1240-1300 MHz 13.8V $315
3319 PA 1w in 20w out 900-930 MHz 13.8V $285
3351 PA 1w in 40w out 900-930 MHz 13.8V $320
\[\text{Transverter modules and OSCAR} \]
3351 PA 20w $198
902 MHz $90
Add 50 UPS SHS, $114 West of the Mississippi.
T/R switch schematic.

ure match isn't far from max gain, but that's about as quantitive as I can get.

Performance

On-the-air results have been good. I actually used the transverter for quite a while at the 250-mW level, and surprised myself by working most of peninsular Florida. I made some of my best contacts with an indoor antenna and the pieces of my project spread across my desk. Moving up to 4 watts put me within 3 dB of the mainstream of off-the-shelf 2-meter SSB rigs (that's about half of one S-unit), and to a level that could be used with commercial amplifiers. It also netted me contacts with five southeastern states using a small antenna at rooftop height.

I'd like to thank Jim Hagan, WA4GHK, for his part in the conceptual design of this circuit and for helping me with on-the-air tests.