Do you need a simple, effective controller for use during foxhunts? I wanted such a device, but was unable to find one that fit my desires. Most controller circuits use some form of PROM chip, which I did not want to use. I did find a controller circuit1 that used 8-bit shift registers to form a programmable memory. To get the required number of programmable bits to create the memory, the device needs 16 register chips. Buying this many chips could become expensive and the device still can only operate in CW.

I was browsing through the local Radio Shack and found a chip which intrigued me. The ISD1000A is billed as a voice record and playback IC. Even though the chip is somewhat expensive, the price is roughly equal to, or slightly cheaper than, buying a PROM or buying 16-shift register chips. The ISD1000A can be used to identify a hidden transmitter with voice, or in CW like the other controller circuits I discovered.

The ID Circuit

The ISD1000A comes packaged with application notes2. I made a few changes to the simple record and playback circuit. The chip has an addressable memory. I decided to use the memory to store a single message—so the addressing circuitry was not used. I obtained the microphone recommended by the application notes. The notes and the microphone differ slightly in the circuits required to power the electret mike. The data included with the microphone described a simpler circuit than that included in the notes. I used the simpler approach and have encountered no problems. My final modifications were made to the speaker output of the ISD1000A. I inserted a 1k potentiometer (R11) which can be used to adjust the audio level sent to the transmitter. I also included a 1:1 audio transformer to provide isolation between the ISD1000A and the transmitter. Other than these changes, I built the circuit as described in the notes.

The Timer Circuits

Two timers are required for the FOXBOX. I used a 555 dual-timer IC to reduce the circuit size. The chip includes two separate 555

1. Circuit diagram
2. Application notes
timers. Timer 1 controls the overall time period of the FOXBOX. The timer is used in the astable mode to provide a continuous repeating cycle. At the end of every timer cycle, the ID circuit is activated. The time period is adjustable by use of a potentiometer for R4. The cycle adjusts between approximately 30 and 90 seconds. A 1 megohm pot, used for R4, will allow for timer periods up to approximately 200 or 300 seconds.

The second timer is used to control the time the transmitter is held in the transmit mode. Timer 2 operates in the monostable mode. A trigger signal is needed to start the timer cycle, which runs for a set time period. The trigger signal is provided by Timer 1 at the end of each of its cycles. Timer 2's cycle adjusts via R1, providing a period of 10 to 25 seconds. The adjustable period allows keying of the transmitter only as long as the ID message lasts.

Keying Circuit

I built several radio keying circuits before I found one which works reliably in this application. I wanted to be able to key several different radios with the circuit. Therefore, the circuit could not be built specifically for any particular radio. One of the requirements I had for this device was the electrical isolation of the timer from the radio's press-to-talk (PTT) circuitry. I wanted the isolation to prevent current flow between the two circuits. I did not want audio signals interfering with the timer output. When using my HT for the fox, the mike and PTT circuits have to be placed in series.

I solved the keying problem by using an optoisolator. The optoisolator IC contains an infrared LED and an infrared phototransistor. The two components are connected only by an infrared light beam. The isolator's LED is driven by the output of the transmit timer.
Figure 1. FOXBOX circuit schematic. Notes: All capacitance values in microfarads. For ICOM and similar HTs, short pins 2 and 3 of J3.

(Timer 2). The LED current is limited by R12. When the LED is lit, the phototransistor is turned “on,” acting as a PTT switch to key the transmitter. R13 limits the current from the radio’s PTT circuit to avoid destroying the phototransistor. The resistor value may need adjustment to allow reliable keying of some rigs. Ohm’s Law can be used to calculate R13.

Let \(R \) equal the value of R13. \(V \) is the voltage measured at the radio’s PTT pin. \(I \) is the maximum current desired to flow through R13. Try to set the current at about 20 mA. Do not let the current become greater than 100 mA or the optoisolator could be destroyed.

The optoisolator I used is not available at Radio Shack. To build a FOXBOX entirely from Radio Shack parts, a small 5V relay (#275-240) can be substituted for U4, R12, and R13. The relay coil is connected directly to the output of Timer 2. The relay’s normally open (NO) contacts can then be used for the PTT switch.

FOXBOX Power

The FOXBOX is designed to operate from 8V to 12V battery power. The circuitry actually operates at 5V. A 7805 voltage regulator (U1) is used to achieve the nec-
necessary 5 volts. No filtering capacitors are used, due to the DC input. Reverse polarity protection is provided by a 1N4001 rectifier diode.

Construction

The entire device was constructed on a breadboard in order to debug the individual circuits before actual construction. After debugging, I built the prototype on a 3" by 4" piece of perfboard. Perforboard construction requires careful attention to correct wiring connections. A printed circuit board would be

QUALITY THAT'S AFFORDABLE

Tri-Ex is pleased to announce the reduction in price on the most popular models of quality Tri-Ex towers for the Amateur radio enthusiast. The overwhelming acceptance of the listed models has made it possible for Tri-Ex to pass on substantial savings to our valued customers.

<table>
<thead>
<tr>
<th>Model</th>
<th>Was</th>
<th>Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM-470</td>
<td>$3,945</td>
<td>$3,658</td>
</tr>
<tr>
<td>WT-51</td>
<td>$1,245</td>
<td>$1,050</td>
</tr>
<tr>
<td>LM-354</td>
<td>$1,865</td>
<td>$1,300</td>
</tr>
</tbody>
</table>

"The LM-354 is supplied with a hand winch brake system. The LM-470 is motorized.

TO ORDER CALL

800-328-2393

TECH SUPPORT 209-651-7859

FAX 209-651-5157

All towers are complete with rigid concrete base mount and rotator mounting plate. Tri-Ex prints and calculations provided with tower are compliant with 1991 Uniform Building Code (U.B.C.) Engineering designed to 1991 U.B.C. - 70 MPH

High Performance PacTOR / AMTOR

Use an ordinary RTTY terminal unit such as CP-1, CP-100, TU-170, ST-6, ST-5000, ST-6000, etc. with G4BMK's BMK-MULTY software running in your IBM-PC or compatible. A TNC is not needed! (but we do have an adapter for PK232). Version 3 now available.

Detailed literature upon request. Prices:

- VISA/MasterCard accepted.
- Amateur callsign required with order.
- Please state 3½ or 5¼ inch disk preference.

Schnitt Systems AC4IW
P.O. Box 5964
Asheville, NC 28813
(704) 274-4646

Figure 3. PC board pattern and parts placement.
helpful for preventing wiring mistakes.

I mounted most of the components on the top side of the circuit board. The three adjustable resistors and the microphone were mounted on the underside of the board. The underside mounting is due to the board’s location close to the inside of the case. I drilled three holes in the case in order to allow for timer and mike level adjustments to be made externally just before hiding the fox. A fourth hole was made to allow direct access to the microphone.

I chose to use a readily available ABS plastic case, even though it offers no RF shielding. To date, I have not experienced any problems with RF interference.

For hiding, I wanted to use a piece of large-diameter PVC pipe to house the FOXBOX and transmitter. The pipe would help with disguising the fox and would also provide protection to the devices inside. Because the FOXBOX was to be placed in the pipe, I wanted all of the external jacks and

Continued on page 50
The Fox Box
Continued from page 47

switches at one end of the case. I achieved the placement goal with one exception: I did not leave enough room on the end of the timer case to place the jack for an external monitoring speaker. Placing the jack on the side of the case caused only a minor problem because the speaker would not be used when the FOXBOX was hidden. Careful attention should allow all jacks and switches to be placed on the end of the case.

Connectors and Switches

Three external connection jacks and two switches are used for the FOXBOX. For power, I chose a coaxial power connector identical to the one used by my ICOM HT. The speaker uses a standard 1/8-inch phone jack. I chose to use a 5-pin DIN plug for interfacing the radio. Any 4-or-more-pin jack would have worked well here. The DIN plug was the least expensive option explored.

I wanted the switches to be low-profile slide switches. A DPDT switch is required for playback/record selection. An SPDT switch is required for power. I used two small DPDT switches because they were easily available.

Operation

Operating the FOXBOX is straightforward. Apply 8 to 12 VDC, then put the play/record switch (S2) into the RECORD position. Speak at a normal level into the microphone to record a message up to approximately 20 seconds long. The message must not be long enough to fill U3's memory or message playback may not occur properly. At the end of the message, place S2 back in the PLAY position. The newly recorded message will play back once at the end of every cycle of Timer 1.

An interface cable is required between the FOXBOX and the hidden transmitter. I want to be able to use different radio frequencies for the hidden T. The first radio, an Alinco 570 uses a four-conductor interface cable to carry PTT, PTT ground, MIC, and MIC ground signals. The second radio, an ICOM O2-AT handheld, only needs a two-conductor cable. To use the HT, the MIC signal from the FOXBOX is placed in series with the PTT ground connection.

I had originally intended to use a third switch in the FOXBOX to accomplish the series MIC connection for HT use. I decided not to use the switch and instead just shorted the appropriate pins in the interface cable connector. The decision to eliminate the switch saves the space required to mount the switch on the case.

Conclusions

Designing and building the FOXBOX was quite fun. If the relay keying circuit is counted, I achieved my goal of building the device entirely of parts available at any Radio Shack store. Future improvements to the FOXBOX could include filters for the audio output. Addressing circuitry could be used to allow the record and playback of several short messages by the ISD1000A. The FOXBOX will serve well to control many types of hidden transmitters. If the FOX is to be hidden for a long period of time, provide plenty of battery capacity for the transmitter. The FOXBOX itself draws only a small amount of power so large batteries are not needed. Creative housings for the entire FOXBOX package will allow limitless hiding possibilities. Let the imagination fly.

References:

SLOW SCAN TV
with the Sound Blaster!

Novel Copy 5,12,24,36 sec. B/W.
6.1 in BW with your Sound
Blaster compatible sound card.
Requires 386A/B/486C/D.
ONLY $45.00.
Shipping $6.
Harbor Technologies
815-763-2683
9931 Alma Dr. Rockford, Illinois 61119

Say You Saw It In
73 Amateur Radio Today

HUGE 100 PAGE CATALOG

- Communications Receivers
- Portable Receivers
- Scanners
- Amateur HF Transceivers
- VHF-UHF Transceivers
- HF Transmitters
- Mobiles
- Amateur and SWL Antennas
- Accessories and Parts
- RTTY and FAX Equipment
- Books and Manuals

This catalog includes prices!

Universal Radio
6830 Americana Pkwy., 73
Reynoldsburg, OH 43068
Tel. 614 866-4267

NEON CALL "SIGNS" 0
- Real NEON tubing (inch character 1' x 3' x 8')
- Hand crafted, last for years
- The ultimate in "Lights" decor
- Rustproof housing for durability
- Available in NEON red, "Racing" blue, orange, white, sky blue, rose, pink & green
- Complete with horns, transmitters and hardware
- 1 year limited warranty
- Available with standard NEON accent strip, bracket or other custom design
- Complete custom unit, tested and delivered: $225.00

JUST NEON, H. Cohen, W2TTE
88 James Street, Utica, New York 13501
(315) 729-9232 FAX

50 73 Amateur Radio Today • March, 1994