
;e was asse
. .. . he first computer Ianguag :m-

bIy language, which subsr~tvres sym-
bols that almost look Iike EngIish words
for the 1's and zeros of the machine's
"native" Ianguage. When you write in
assembly language, you regularly by-
pass the applicarion software and com-
municate directly with the CPU, BIOS,
and MS-DOS. By using assembly lan-

I guage, yo11 bogtn to understand what is rcally happening inside 3eginner's thecompu~er .
Assembly language has other benefits, which are well known to

professional programmers. I t is fast-up to 100 rimes faster than
Basic. I t uses memory more eHicienrly than high-revel languages,

Course in and it is usually the best language for controlling the compute<s
110 devices, especially the vidco screen. T h c main drawback-

an often prohibitively long programming
rime-is rnanageabte if you use assembly
language sparingly. In fact, rhe best soft-
ware combines high-level code with assem-
bly language subroutines.

Normally, to do any serious assembly
language programming you have to buy a
commercial assembler, which translates

L commands into the binary code understcad
by the computcr. Conveniently, the De-
bug.COM program that comes with MS-
DOS provides a window into machine-level
and assembly language programming. In
this tutorial, FI1 show you how to go into
Debug and see how the compuFer stores
data in numerical form: T h e n i'll offer some
short assembly language programs that il-
lustrate concepts that apply to full-blown

by Hardin Brothers assemblers.

Debug Starts Here
To begin, put your MSDOS disk in drive A and type DEBUG.

In a second or two, you should see a hyphen on the next line.
The hyphen is Debug's prompt, and it means that Debug is waiting
for your command. Debug expects you to press the enter key
after each command, which you can type in either upper- or
lowercase. -

.* Type in the letter r and press enter. You will see a thrwtine
display. The chart Breakdown of Initial Debug Display explains
the significance of the entries. Some of the numbers and Ietters
might be different, but the organization of the display will be
essentially the same. (In all of the figures accompanying this article,
the only characters you type in are those next to the Debug prompt
and memory addresses [such as 16M:0138]. Everything else is
commentary or a representation of what you should see on screen.)

By typing in an r, you have asked Debug w show you the
current conrents of the CPU's registers. Registers are memory
locations in the CPU (instead of in the computefs RAM). You can
use some registers for almost any purpose; others are limited to
specific uses. (IF you don't understand bow memory addresses
work, see the sidebar "The Structure of Memory.")
The CPU in MSDOS computers has 14 internat registers, each

of which can hoId 16 bits. or one word. T h e first four-AX BX,
CX, and DX-are called general-purpose registers; their use is
largely up ta you. Each of these four registers can also serve as
two 8-bit (the equivalent of two I-byte) registers. T h e top byte

WHAT YOU NEED: IWS-DOS and hti.

PC Resource November 1987

.'c "

.' '1' , "

",../~ -~' :-J
;;

You don't need to be a pro to write programs in assembly language.

Using the MS-DOS Debug program as your starting point,

you can master the basics in record time.

..

of AX is called AH; the low byte is called AL. You determine
when to use these areas as 16-bit registers and when to use them
as 8-bit registers.

[n the initial Debug display, the contents of eachgeneral-purpose
register is 0000. The samevalue is stored in three pointer registers:
BP, S[, and Dr. The base pointer (BP) register generally serves
as a placemark to help you manipulate a complex data structure
called a stack frame.

The source index (81) and destination index (01) registers are
mostly for moving large blocks of memory, which are called strings
in assemblyparlanceregardlessof whether they contain textual data.

The final register in the first row of the Debug display is the
stack pointer (SP), an in-memory data structure that serves many
purposes. Whenever a program branches to a subroutine, it stores
the return address on the stack. Programmers also use the stack
to temporarily store the contents of registers and sometimes to
pass values from one routine to another.

The first four registers in the second row of the display are the
segment registers. Because of the way memory is organized in an
MS-DOS computer, two registers are required to designate mem-
)ry locations. The segment registers point to a large chunk of
)C Resource November 1987

memory; the specific address within that chunk is kept in one of
the other registers.

The fifth register in the second row is the instruction pointer
(IP). It always contains the address of the next instruction to be
executed, in the same way that Basic always keeps track of which
line number should be interpreted and executed next.

The contents of all 13 numeric registers are displayed in hexa-
decimal (hex) format. Assembly language programmers rarely use
decimal numbers. Instead, they use either the binary (base 2) or
hex (base 16) number system.

The last part of the second line in the initial Debug display
contains eight two-letter abbreviations showing the state of the ~
important bits in the flag register (see the table Status Flags). The ~
CPU has a special 16-bit register to keep track of these statUs 't;:

flags. They are updated to give information about the results of ~
many assembly languageoperations and can be tested to determine ~
whether a programshould branch to a new set of instructions. 1';

The flags are the basis of all conditional tests in assembly language. '§
For example, the zero flag might change from NZ to ZR to show ~
that the result of a mathematical operation is zero. Not all flag- :::!

register bits are used. .
51

so obvious is where che information oriei- Flags <.

nates and where the result is stored. Avoid
the cemptacion to read the Iine as, "Add
AX and BX." Instead, read it as, "Add the
value in the BX register to that in the AX
register." Whcn you think of it that way,
the expected result shouPd be dear: TIlc
value En BX will be added to the value in
AX, and the result win be left in the AX
register. This line is analogous to the Basic
statement:

All flags 4

All flags I

W = overf
3 W = decrt
<I = enable .-

Overflow
Direction
Enterruptt
m.

N V = n o o
UP = incre
DI = disabl
PL = plus

low
ment I
led I

31911:
Zero:
AuxiIiary

VCr = negal
!R = zero
iC = auxili:
:arry

carry:

One advantage of programming in Debug
is that you can watch the program execute
step by step. Type in the letter r (for tllc
Trace command) three times and watch
the AX and BX registers. The Trace com-
mand tells Debug to execute an instruction
and display the registers again. Ft lets you
watch each register being loaded with
the appropriate value and the Final result
being placed in the AX regisrer. Your
screen should resemble the one shown in
Figure 2.

Parity:
Carry:

~ar i ty I
arry t

'E = parity
2Y = carry

Video Output
So fat, you've done a lot of looking but

no programming. Jkfore writing a short
program, you need to know one more De-
bug command. If you type in an r, Debug
shows you the initial register display. But
if you type in an r plus the name of a
register, Debug displays the contents of the
register and Iers you enter a new value.

For example, if you type:

which tells Debug to "unassembIe0' 7 bytes
starting at address 100 hex. (The letter I
stands for Icngth.) Your screen should look
like the one shown at rhe bottom of Figure
1. Type in an r co produce the register
display. It should took rhe same as your
original register display, except that the last
line shows the first instruction of your pro-
gram.

Saving and Running a Program
Although the first program doesn't ac-

complish much, i t helps you learn the ru-
diments of Debugs rcgistcr display, assem-
hting and unassernbling a program, and

A Basic Vocabulary
Every line in a Debug sssembly language

program has two parts. T h e first part of Debug displays AX 0000 on one line and
a colon on the next. If you enter 11 11,
Debug will change the contents of the AX
register to 1 f 11 hex. Remember that num-
bers typed into and displayed by Debug

the line always contains a two-, three-, or
four-letter command. These commands are
called mnemonics, or memory words, be-
cause they represent exactly one CPU in-
struction and are easier to remember than

rracing a program to watch it execute. Bc-
fore you can use Debug to create a program,
you must be able to save the program to
disk, so chat you can run it from the M S
DOS prompt.

The program in Figure 3, while simple,
introduces several new concepts. &fore
starting, you should clear the lasc program
from Debug's memory. Type in the letter
g to quit Debug, then at the MS-DOS
prompt type DEBUG.

Shuffling data around in registers is a
ustful skill that produces no output to watch
or evaluate. The Figure 3 listing, however,
prints a message on screen-in this case,
the phrase, "Hello world!" The program
adds two new skills to your repertoire: sav-

are in hex format.
Now type in the Ietter o ro invoke the

Assemble command. Debug answers by
displaying a four-digit number, a colon,
and 0100. The cursor appears without a
prompt and waits for you to enter program
statements.

The numbers displayed are the segment
and offset of the current location in mtm-

groups of binary digits. They are sometimes
called op-codes because they represent
CPU operations.

After the on-codc are one or two ooer-
ands (or nond). The number depend; on
the particular command and the types of
information on which it operates. You may
conclude the line with a semicolon foIlowed
by a remark.
The First op-code in the program is MOV,

a mnemonic for the Move command. It is
one of the most common mnemonics in
any assembly language program. You use it

ory. T h e segment addresses you see will
probably differ from those in the figures;
they are determined by the MS-DOS ver-
sion you use and whether you bsve any
memory-resident utilities, RAM disks, or
print spoolers. The number after the colon,
which is calIed the offset, should be 0100.
All .COM programs begin at address 100
hex of their memory segment, and Debug
can create only .COM programs. If the
offset you see is not 0100, press enter and

to move data into registers, into memory, ing a program on disk and communicating
with MS-DOS.

The CPU knows nothing about video
screens, disk drives, keyboards, modems,
or printers. To perform 110 functions, a
program must either manipulate the com-
puter's hardware directly, which is a com-
plicated and difficult task, or seek help from
MS-DOS or the BIOS.

To write programs of your own, you need
a list of MS-DOS routines and an expIa-
nation of how to use them. You can find
this information in the programmer's rcf-
erence manual for any MS-DOS computer.
The MSDOS routines are the same re-
gardless of which computer you own; the
BIOS roucines are essentially the same for
all IBM PClXTlAT compatibles.

T h e first line of the program places th,

from register to register, and berween reg-
isters and memory Locations. Its name is
technicnlly incorrect, since it only mpm
information from one place to another. Like
Basic's Ler statement, it leaves the value in
the source operand intact.

T h e MOV operator is always followed
type:

by two operands: the destination and the
source. In the Figure 1 program, (he first
Iine tells the CPU, "Move the value 1 into
the AX register." in a similar manner, the
second line loads the value 2 into the BX
rgister. The two lines are analogous to the

to start assembly at location 0100 hex.
T h e first progam is exceedingly simple.

Type in the three instruction lines in Figure
1. Use the tab key to space be twen coI-
umns and press enter at the end of each
line. Press the enter key once more, and
you should bc back at Debug's hyphen
prompt. To check your work, enter:

Basic statement:

It might be obvious to you that the third
line is an addition instruction; what is not

PC Resource November 19:

value 09 hex in the AH register (the top
byte of the AX register). Later, the program
asks for an MS-DOS service to print a line
on the screen. In general, you request each
MS-DOS service by putting its number in
AH, loading the other registers with the
information that MS-DOS will need, and
then making an MS-DOS request. In this
case, you use MS-DOS service 9 (display
string).

The second line loads the DX register
with the value 120 hex. to display a string,
MS-DOS must know where to find the
string in memory, and MS-DOS service 9
expects you to put the string's address in
the DS and DX registers. Since the DS
register is already set to represent the mem-
ory area that the program willuse, you need
to set only the DX register. The value 120
hex will be past the last instruction in the
program and is a convenient location to
stOre the string.

The third line of the program invokes
MS-DOS and sends it your request. The
INT mnemonic stands for interrupt-a term
that refers to the CPU's ability to be in-
terrupted by events in the real world. Every
time you press a key, the keyboard hard-
ware interrupts the CPU, which stops what
it is doing, gets the code for the key you
pressed, and stores the code in its type-
ahead buffer. The CPU is also interrupted
PC Resource November 1987

Figure I. Type in the threeprogram lines near tIll!center of the figure. The simple program
demonstrates how to flSeMOV and ADD, two common assembly language commands.

The programas you type it.

A>debug
-all'9
169C:9199
169C:9193
169C:9196
169C:9198

moY
moy
add

ax,1
bx,2
aX,bx

The program as Debug unassembles it.

-u199 17
169C:9199 B89199
169C:9193 BBM99
169C:9196 9ID8

MOV
MOV
ADD

AX,9991
BX,9992
AX,BX

End'"

Figure2. Debugs Tracecommandletsyou seehow eachline in Figure1 changesthe CPU's
registers.

-r
AX=9999 BX=9999 CX=9999 DX=9999 SP=FFEE BP=9999 SI=9999 01=9999
DS=169C ES=169C SS-169C CS=169C IP=9199 NVUP EI Pl NZ NAPO NC
169C:9199 B89199 MOV AX,9991-t

AX=9991 BX=9999 CX-9999 DX=9999 SP=FFEE 8P=9999 SI.9999 01=9999
DS=169C ES=169C SS.169C CS=169C IP=9193 NVUP EI Pl NZ NAPO NC
169C:9193 889299 MOV BX,9992-t

AX=9991 BX=9992
DS=169C ES=169C
169C:9196 9108
-t

AX=9993 8X=9992
DS=169C ES=169C
169C :9198 9999
OS: 9992-99

CX-9999 DX=9999 SP=FFEE BP=9999 SI-9999 01=9999
SS=169C CS=169C IP=9196 NVUP EI Pl NZ NA PO NC

ADD AX,BX

CX=9999 DX=9999 SP=FFEE BP.9999 Sl=9999 01=9999
SS=169C CS=169C IP=9198 NVUP EI Pl NZNA PE NC

ADD [BX+SI],Al

End'"

53

to learr h,

is to study

and e: nt

with short programs.

I, thoug
. .

return and line feed characters wirh the
string. The carriage return is ASCII char-
acter 13 (OD hex); the tine feed is ASCII
character 10 (OA hex). The Enter command
tells Debug to enter the text of the message,
followed by a OD hex byte, a OA hex byce,
and the dollar sign that MS-DOS requires
to terminate strings.

The first section in Figure 5 is repeated
three times, each time with a different loop-
ing mechanism. The command:

telEs Debug to start assembting at address
130 hex, which is the target of the JMP
command at the beginning of the program.

In the first example, the DX register is
loaded with the string address, the CX
register is loaded with the loop count, and
the AH register Is loaded with the MS-
DOS service number. T h e program calls
I N T 2 1, as before, to request that MS-
DOS print the srting. T h e nexr line of the
program, loop 138, uses a special iooping

I You can manipulate the video screen by ers, color value 000 is black and 11 1 is
changing the bits within the byte chat white. Most of the other values represent
controls how each character is displayed. shades of gray. If the background color
This byte is called the screen attribute value is 100, displayed characters will be
byrc, and it immediately precedes the underlined.

I
8 byce thac contains the character code in With color adapters, the following color
I memory. Both are stored in a special sec- values are possible:
/ tion of RAM that is set aside for video.

T h e program in Figure 6 prompts you Color Bit values

to enter a screen attribute byte in hexa- Black 0 0 0
Blue : decimal. If you have a color monitor,

0 0 1

/ consuIt the cable below to find the 3-bit
Green 0 1 0

I equivalents for the colors you wanc for Cyan 0 1 1

the foreground and background. Insert Red 1 0 0

the color values in the proper places in Magenta 1 0 1
Brown

I the byte, which are shown in the chart
1 1 0

Screen Attributes. For,the blink and high- Light gray 1 1 1

1 intensity features, write 1 to turn a feature In this scheme, intensified black ap-
on and zero to turn it off. Then convert pears as dark gray, intensified brown
the entire byte to hexadecimal. is yellow, and intensified light gray is

/ With monochrome-only graphics adapt- white. 0
I
I Screen Attributes

I
Blink
bit

Bat
I

:kground
color

:h
sity

I
reground
color

mechanism built into the CPU. T h e Loop
instruction really tells the CI'U, "Reduce
the value in CX by I. If CX is nor zero,
jump to the address indica~ed in this in-
struction. If CX is zero, go on to the
next instruction." I n other words, Debug's
Loop command is much like Basic's Next
statement.

T h e second version of the program uses
a different technique to control the loop.
This time, the loop counter is loaded into
the BX register (you could use CX, Sl, DI,
or BP the same way). At the end of the
Ioop, the instruction:

tells theCPUto decrernent(reduce by 1) the
value in the BX register. T h e loop should
continue until BX is zero, at which point che
program will set the zero status flag.

The next instruction:

jnz 138

tells the CPU to jump to location 138 hex
only if the zero flag is not set. Because the
zero flag is set only if BX has been dec-
remented to zero, the loop runs 20 times.
These two lines are analogous to the Basic
statements:

BX= BX- 1: IF BX <> 0 THEN GOTO 138

One advantage of this kind of loop is that
you can nest it in another loop controlled
by the CX register. '

The final version of the program uses
other instructions to control the loon. I t
loads the loop counter into the CX register
again, but this time it decrements CX at
the end of the loop. Then the instruction:

jcxz 13f

tells the CPU, "Jump to address 13F hex
if CX contains zero. Otherwise continue to
rhe next instruction." T h e following line
has an unconditional jump back to the
EOP of the loop. The CPU sees the JMP
instruction only if CX has a value other
than zero.

T h e chree lines controlling the end of the
loop En the third example are similar LO [tie
Basic statements:

CX = CX - 1: IF CX = 0 THEN GOTO 13F
ELSE GOTI 138

The JCXZ instruction (jump if CX is zero)
is often used in complex Iooping structures
to make a program check for the end of a
loop in the middle of a block of code.

After you have assembled and saved all
three versions of the program, try running
them from the MS-DOS prompt to make
sure they all work. I f they don't, trace
through them (remember to use the Go
command when you come to an INT in-
struction) to see where you made a mistake.

You might be disappointed at the speed
of the three programs. Assembly language

PC Resource November 1987

is supposed to be fast, yet these programs
seem to run no faster than Basic's Print

command. The culprit is the MS-DOS dis-
play-string service, which displays one char-
acter at a time and checks the keYDoard to
be sure you aren't pressing Ctrl-Break or
Ctrl-C to stop the program. Most com-
mercial programs avoid the MS-DOS dis-
play services because they are so slow.

Something Useful
The program listing in Figure 6 is much

longer than the other programs, but you
should be able to understand it without

much difficulty. It uses some new MS-DOS
services and one of the BIOS services.

The program prompts you for two hex
digits and interprets them as screen attri-
butes. It then clears the screen, sets the
new attribute, and returns to MS-DOS.
The new screen attributes stay in effect
until another program changes them. Con-
sult the sidebar "Video by Numbers" to
learn how to manipulate bits in the screen-
attribute byte and translate the result
into hex.

The first step in writing a program like
this with Debug is organizing the prograrA
and deciding on addresses for various parts
of it. Since you need to know the addresses
before typing in the program, you must
guess how long each section will be. Inev-
itably, there will be wasted space-parts of
the program won't be used at all-but the
entire screen attribute program will take up
only 193 bytes on disk, which is less than
the minimum 1,024 bytes that MS-DOS
allocates to each disk file. Thus, you don't
have to worry about conserving bytes.

My outline for the program appears at
the top of Figure 6. The program prints a
prompt, waits for the user to enter two hex
digits and a carriage return, clears the
screen, sets the requested attributes, and
ends. I've broken the Debug assembly pro-
cess into logical blocks and added a com-
ment to each line so you can see what is
happening each step of the way.

The program begins at address 100 hex
by using MS-DOS service 9 to display the
prompt string. It then calls MS-DOS ser-
vice 1 (read keyboard and echo) at address
107 hex to accept a keystroke. The user
sees the typed character on screen but
cannot backspace or edit characters.

Service 1 returns the keystroke in the
AL register. Next, at address lOB hex, the
program uses the Call instruction to send
control to a subroutine. Debug's Call is
much like Basic's Gosub instruction; when

you invoke it, the current address is saved
on the stack and the program jumps to the
new routine. When the routine ends, it uses
an RET instruction, which is analogous to
Basic's Return, to go back to the main
program.

The subroutine, which I'll explain in a
PC Resource November 1987

Figure 6. This Debug script creates an assembly language program that uses MS-DOS and
BIOS services to change the display attributes.

ProgramOut1i ne:

100: Print prompt
Get keystroke

Ca11 convert rout i ne
If carry flag is set, start again,

else store key value in BH
Get keystroke

Ca11 convert rout i ne
If carry flag is set, start again,

else add key to value in BH
Get keystroke

Compare to carri age return
If different, start again

Use Video BIOS rputine to clear screen
End program.

150: Convert routine -- Keystroke in AL converted to binary:
If keystroke is less than '0' then go to "Invalid" i
If keystroke is less than or equal to '9' then go to "Set value"
Force keystroke to uppercase
If keystroke is less than 'A' then go to "Invalid"
If keystroke is greather than 'F' then go to "Invalid"
Add 9 to key value

Set value:
Erase top four bi ts of key value
Reset carry fl ag
Return

170:

180: Inval id:
Set carry fl ag
Return

"

;DX = string address
;DOS service: Display String
;Call DOS

;DOSservice: get keystroke
;Call DOS
; Convert keystroke
; I f error, start over
;Amount to shift
; Move to top of byte
;And save value

;Get another keystroke
; Convert it
;If error, start over
;Else add to 1st value

;Get another keystroke
; Carri age return?
;No -- start over

; El se scroll ent i re window
;0,0 is top-left corner
; 18h, 4fh = 24,79 -- bottom corner
;BIOS service: scroll window up
;Call Video BIOS

;0,0 is top-left corner
;Select pa~e 0
;BIOS serVlce: set cursor position
;Call Video BIOS

; Return to DOS

;Is key < '0' ?
;Yes -- mark as invalid
;Is key < '9' ?
;Yes -- set value
;Else force to upper-case
; I s key < 'A' ?
;Yes -- mark as invalid
;Is key> 'F' ?
;Yes -- mark as invalid
; El se add offset
; and set value

;Throw away top 4 bits
;Clear error flag

Figure 6 continued ~

57

190: Prompt message

A>debug
-a 100
169C:0100 mov dX,190
169C:0103 mov ah,9
169C:0105 int 21

169C:0107 mov ah, 1
169C:0109 int 21
169C:0108 call 150
169C:010E jc 100
169C:0110 mov cl,4
169C:0112 shl al,cl
169C:0114 mov bh,al

169C:0116 int 21
169C:0118 call 150
169C:011B jc 100
169C:011D add bh, al

169C:011F int 21
169C:0121 mp al,0d
169C:0123 Jne 100

169C:0125 mov al,0
169C:0127 mov cX,0
169C: 012A mov dX,184f
169C:0120 mov ah,6
169C:012F int 10

169C:0131 mov dX,0
169C:0134 mov bh,0
169C:0136 mov ah, 2
169C:0138 int 10

169C:013A int 20
169C;,013C
-a 150
169C:0150

j;;P
al,30

169C:0152 180
169C:0154 cmp al,39
169C:0156 jbe 170
169C:0158 and al,df
169C:015A

j;;P
a1,41

169C:015C 180
169C:015E mp al,46
169C:0160 Ja 180
169C:0162 add al, 9
169C:0164 jmp 170
169C:0166

-a 170
169C:0170 and al,0f
169C:0172 clc

hued
7 v a t . v . . w . w . . - .-. ; and return

169C:8174

-a 180
169C:0180 s t c
169C:0181 r e t
169C:0182

;Set e r ro r indicator
; and return

- e 1B0 0d 0a *Enter two hex d f g f t s for screen attribute .-> f *

-d 190 1 40
169C:8190 0D 0A 45 6E 74 65 72 20-74 77 6F 20 68 65 78 20 ..Enter two hex
169C:01A0 64 69 67 69 74 73 20 66-6F 72 20 7 3 63 72 65 65 d i g i t s f o r scree
169C:0100 6E 20 61 74 74 72 69 62-75 74 65 28 30 30 3E 20 n attribute ==>
169C:fllCB 2 4 B0 08 MI BB 08 0a 00-00 fl0 O0 g0 OD 00 00 00 S
- W X
CX 0000
:c1
-n screen.com
- W
Writing BBCl bytes
-9

moment, is set up to either converc the
keystroke from ASCII to hex or to set the
carry flag in the sratus regiscer if the key-
stroke isn't in the appropriate range. Be-
cause the carry flag is easy to manipulate
and test, programmers often use the carry
flag to pass success-or-failure messages be-
tween routines. T h e line after the Call uses
a JC instruction (jump only if the carry flag
is set).

Generally, programmers test status flags
by having the program jump to a speciaI
section of code depending on the condition
of one or more of the flag bits. These
conditional jumps resemble Basic's I f . . .
Then Goto statement. The re are 30 kinds
of conditional jumps in assembly language,
although many are synonyms for each

11 C

to-he:
ful. I1

other. Ef you are tracing through a program
and Debug seems to have changed the
condition for jumping, don't be alarmed.
'' -he carry flag was not set, the ASCII-

K conversion subroutine was success-
I this case, the AL register contains
le between 00 hex and OF hex to

lndrcate which key was pressed, Since this
is the first of two hex digits that the program
expects the user to entkr, what you really
need is a value between 00 hex and OF0
hex; that is, the program has to shift the
value from the [ower half of the byte to the
upper half.

There are two ways to perform this shift.
The program can multiply the byte in A L
by 10 hex or it can shift every bit in AL
four positions to the left. The second
method is faster and easier to program than
the first.

T h e instruction a t address 1 10 hex moves
a count of 4 into the CL register. The
instruction:

shl al,cl

in the next line tells the CPU to shift the
value in AL a number of positions left
equivalent to the value in CL. During each
step of the shift operation, the current value
in the carry flag is discarded, the bit farthest

to the left of the operand (AC, in this case)
is put in the carry flag, the other bits in
the operand are each movcd over one place
to rhe left, and a zero bit is inserted into
che position farthest to the right of the
operand. T h e process sounds more com-
plicaced than it is. Each shift to the left is
identical to multiplying the operand by 2,
so the four Ieft shifts in the program are
equivalent to multiplying by 2 to the 4th
power, or 16.

After the value in A L has been shifted
to the top of the byte, the result is copied
 to the BH register. There is a reason for
selecting this particular register, which E'II
explain later.

Nothing you have done so far has aItered
the original vaiue of 1 in the AH register,
so the program can ask for another key-
stroke simply by invoking I N T 21 again.
Once again, it calls the conversion subrou-
tine to handle the keystroke and checks
the carry flag for an error.

If the conversion subroutine doesn't re-
port an error, the new value in AL (which
is between 00 hex and OF hex) is added to
the number that was stored in BH. T h e n
a final call to MS-DOS service 1 (at address
I1F hex) gets a third keystroke, which
should be a carriage return. T h e program
then uses the CMP instrvction at address
I 2 1 hex to compare the keystroke in AL
with the value for a carriage return. T h e
following line uses another conditional
jump, JNE (jump if not equal), to restart
the program if the user did nor press enter.

Once ;the program gets to address 125
hex, the user has typed two hex digits
followed by a carriage return, and the pro-
gram has converted the digits to binary form
and stored them in the BH register. Ic is
now time to clear the screen and set the
new attributes.

There are no MS-DOS services to clear
the video screen, set attributes, or position
t h e c u r s o r . I f you u s e MS-DOS's
ANSI.SYS console driver, you can print
special sequences of characters that do such

but they cr . .- ;low, and t things, I :nd to be 5 hey
wonk work I! you haven't ~nstailed the
ANSI.SYS file. On all IBM PCIXTIAT-
compatible computers, I N T 10 calls a set
of BIOS ROM routines that control the
video screen, change modes, position the
cursor, print graphics, and so on.

Service 6 of INT 10 scrolls any portion
of the active screen up a specific number
of lines (service 7. which scrolls down.
would serve the purpose just as well). You
call it by placing che service number (6) in
the AH register, placing the number of lines
to scroll in AL, setting values for the top-
left and bottom-right corners of the scroll
window in CX and DX, and putting the
attribute to be used in BH. T h c program
has already stored the attribute in UH, so
you can ignore that step for now.

At address 125 hex, the program places
a zero in AL to signify that the entire
window should be erased. At 127 hex, mov-
ing a zero into the CX register is the same
as loading a zero into CH and CL to tell
the BIOS that the top edge of the window
is in row zero, column zcro. (Screen rows
and columns are always counted from zero,
not I.) The value placed in DH and DL
should be 18 hex (24 decimal) and 4F hex
(79 decimal), respectively, to indicate that
the bottom edge of the window is in column
79 of row 24. Instead of using two separate
instructions to place those values, the pro-
gram does it in one step with the; command:

mov dx,t84F

Finally, the program places the service
number in AH and calls INT 10.

Thcvideo BIOS routine responds by eras-
ing the entire screen, usingspace characters
and the new attribute byte in BH. However,
it does not move the cursor to the top of the
screen; you have not yet completed rhe as-
sembly language equivalent of the Basic
clear-screen (CLS) command.

Video BIOS service 2 positions the cur-
sor. T o caIl it, you must make the program
place the requested cursor position in DH
and DL, the video page number in BH,
and the service number (2) in AH. Since
you want the cursor to be in the top Ieft of
the screen, the program loads the DX reg-
ister with zero. Unless anorhcr program has
impolitely left the video area confused, the
current video page will be zero, which the
Figure 6 program places in BH. T h e n it
calls I N T 10 again to put the cursor a t the
top of the screen. T h e last step is to return
to MS-DOS through I N T 20.

Converting Numbers
Most of the remainder of the program in

Figure 6 i s concerned with converting a
keystroke to a hex digir. If the user presses
5, for example, the AL register will contain
35 hex, which is the ASCII value of 5. You
need a subroutine to change 35 hex to 05

PC Resource November 1987

hex and to make sure the user typed a valid
hex digit.

The subroutine that does this begins at
address 150 hex with a series of tests and
conditionaljumps. If the value in AL is less
than 30 hex, you don't have a valid hex
digit. If it is between 30 and 39 hex inclu-
sive, it is a decimal digit and can be con-
verted directlyto binary.The JBfjumpif -
below) instruction at address 152 hex
means "Jump if 'the left operand was less
than the right operand in the last test." The'"
jBE operand two lines later means, "Jump
if it was below or equal." ,

If the keystroke was not between zero
and 9, it may be one of the alphabetic hex
digits. It may also be in either upper- or
lowercase. A look at any chart that converts
ASCIIcharacters to binary reveals'only one
difference between upper- and lowercase
letters: Bit 5 is turned on in lowercase
letters and turned off in uppercase letters.
The instruction:

and al,df

at address 158 hex uses the logical And
operation to check that bit 5 is turned off.
The same technique works in Basic,where
it is often expressed in a line like:

CH$ =CHR$(ASC(CH$) AND &HDF)

Next, the Figure 6 program performs two
more tests to see if the keystroke in AL is,
indeed, between the letters A and F. If it
is, the program adds 9 to the character
before jumping to address 170 hex. Adding

the 9 is another bit of trickery (pun in-
tended). The ASCII values for the letters
A-Fare 41-45 hex. By adding 9, you con-
vert them to 4A-4F hex. The second digit
of the resulting value is now correct.

If the character is valid, the AL register
nowholds a valueeither between 30-39 hex
or 4A-4F hex. Since you want a result be-
tween OO-OFhex, you need onlychange the
first halfof the byte to zero by using another
And operation at address 170hex. Then the

,CLC command clears (turns off) the carry
',flag and an RET instruction returns control

to the main part of the program.
,. If the user does not type a valid character,

'the subroutine passes control to address
180 hex. There, it turns on the carry flag
with the STC (set carry flag) instruction
before the program returns.

All that is left is to place the necessary
prompt in memorywith Debug's Enter com-
mand, display a section of memory to see
how long the total program is, and save the
program. (The prompt beginswith acarriage
return and line feed so it is alwaysdisplayed
on a new line, even ifthe user makes a mis-
take and the program starts over.)

After you save the program, you will
undoubtedly want to return to MS-DOS
and run it. If it doesn't work correctly, re-
enter, Debug, load the program, and trace
through it. (Remember not to trace through
the interrupt calls.) Debugging and tracing
are a necessary part of writing in assembly
language, because almost every program
has bugs in it at first.

What Next?
If you have enjoyed this short introduc-

tion to assembly language, you will want
to experiment with your own ideas, write
more complex programs, and learn to use
the full CPU instruction set. To do this,
you will need documentation of both the
MS-DOS services and the BIOS interrupts,
as well as the full CPU instruction set.
There are many good books on assembly
language that have both.

Youwillprobably become frustrated with
Debug.COM's limitations and want a bet-
ter assembler and tracing utility. The stan-
dard assembler, and the one used in most
magazine articles, is Microsoft's Macro
Assembler (MASM). Newer versions of
MASM have a debugging program called
Symdeb, which is a large step up from
Debug.COM.

The best way to learn, though, is to study
and experiment with short programs. You
might find that a well-commented assembly
language program is at least as easy to
understand as a program of similar length
written in a high-Ievellangliage. You will
gain insight into your computer that will
make you a better programmer-no matter
which high-level language you choose. 0

HARDIN BRafHERS is 0freelonce progrommer ond

technicol writer. Write /() mm at 280 N. Campus Ave.,

Upland, G191786. &close a self-addressed, stamped

envelope for a reply. 1&ucon olso contact Hardin through

Compuseroe~ Eosyplex at 70007,//50.

PC Resource November 1987 59

